
Enhancing Abstraction and
Symbolic Execution for Shape

Analysis of C-Programs operating
on Linked Lists

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

David Kaindlstorfer, BSc
Matrikelnummer 01624252

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Mitwirkung: Prof. Ing. Tomáš Vojnar, Ph.D.

Doc. Mgr. Adam Rogalewicz, Ph.D.
Ing. Veronika Šoková

Wien, 25. Jänner 2022
David Kaindlstorfer Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Enhancing Abstraction and
Symbolic Execution for Shape

Analysis of C-Programs operating
on Linked Lists

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

David Kaindlstorfer, BSc
Registration Number 01624252

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Math. Dr.techn. Florian Zuleger
Assistance: Prof. Ing. Tomáš Vojnar, Ph.D.

Doc. Mgr. Adam Rogalewicz, Ph.D.
Ing. Veronika Šoková

Vienna, 25th January, 2022
David Kaindlstorfer Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

David Kaindlstorfer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Jänner 2022
David Kaindlstorfer

v

Acknowledgements

First I want to thank my supervisor Florian Zuleger. The regular meetings were very
helpful and valuable especially at the beginning of our collaboration where it was necessary
to understand a quite complex analysis tool. Also I would like to thank for the fast and
uncomplicated help at the time when it was not clear how to proceed with the problems
I had.

Secondly I want to thank the team I collaborated with at VUT University in Brno
for their effort in the meetings, their time during my visit in Brno and the support to
understand Broom’s source code. Tomáš Vojnar helped in getting an idea of the Predator
analyser and gave high-level ideas how to resolve problems of Broom. Adam Rogalewicz
helped me in debugging, understanding the abstraction procedure and resolving bugs.
Veronika Šoková helped me in understanding the symbolic execution and working with
the Infer analyser.

vii

Kurzfassung

Diese Arbeit beschreibt Verbesserungen für das statische Analysetool Broom. Broom ana-
lysiert Programmteile eines C-Programmes und beweist, dass es frei von Speicherfehlern
ist. Im Besonderen ist Broom in der Lage, Programme, die mit verschiedenen Varianten
von verketteten Listen arbeiten, zu analysieren. Falls Broom das Eingabeprogramm als
sicher klassifiziert, erzeugt es für jede Funktion eine Menge an Zusicherungen, die in einer
bestimmten Form von Separation Logic definiert werden.

Broom ist derzeit noch ein Prototyp und die Komplexität der Listen, die analysiert
werden können, ist begrenzt. Deshalb wurde der Abstraktionsalgorithmus von Broom
im Rahmen dieser Arbeit so erweitert, dass er auch Listen unterstützt, bei denen jeder
Knoten einen Zeiger auf ein gemeinsames Objekt hat. Diese Verbesserung ist praktisch
relevant, da diese Listen gerne in systemnahen Code verwendet werden.

Darüber hinaus beschäftigt sich diese Arbeit mit dem Problem der Explosion des Zu-
standsraumes bei der Analyse komplexerer Funktionen. Es wurde in weiterer Folge eine
Prozedur implementiert, die diesen Zustandsraum so beschneidet, dass die Zahl der
Zusicherungen für eine Funktion signifikant reduziert wird. Besipielsweise führt diese
Verbesserung dazu, dass die Zahl der Zusicherungen, die für eine Funktion, die über eine
verschachtelte Liste iteriert, von 400 auf zwei reduziert wird. Als Konsequenz konnte
die Dauer der Analyse des entsprechenden Codes auf vier Minuten reduziert werden,
während die Analyse vor der Implementierung der Verbesserungen praktisch unmöglich
war.

ix

Abstract

This thesis describes improvements of the static analyser Broom. Broom can analyse
fragments of programs written in the programming language C proving the absence of
memory bugs. Specifically, the tool supports programs operating on different kinds of
linked lists. If Broom considers the input program as safe, it generates for each function
a set of contracts, which are defined in a special flavour of Separation Logic.

Broom is still a prototype and the complexity of the lists that can be analysed is limited.
To this end we extended Broom’s abstraction procedure such that also lists with pointers
to shared non-global heap objects, which are common in system code, can be analysed.

Additionally we tackled the state space explosion problem, which may occur when Broom
analyses more complex functions. We implemented a pruning strategy that significantly
reduces the number of contracts for these functions. This improvement allowed us to
reduce the number of contracts that would be generated for a function traversing a
nested list from over 400 to two. This results in an analysis of the respective code within
approximately four minutes while analysing this code was practically infeasible before
the pruning was implemented.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 1
1.3 Problem Statement . 2
1.4 Methods . 3
1.5 Contributions . 3

2 Preliminaries 5
2.1 Memory Model . 5
2.2 Operational Semantics of the Low-level language 6
2.3 Separation Logic . 6
2.4 Bi-Abduction . 8
2.5 Symbolic Execution . 10

3 Enhancing Symbolic Execution 13
3.1 Motivation . 13
3.2 Pruning of Contracts . 17
3.3 Pruning of Intermediate States . 20
3.4 Optimizing Traversal of States for Invariant Checks 20

4 Enhancing list abstraction 23
4.1 New List (Segment) Predicate . 23
4.2 Abstraction of Points-to Predicates . 24
4.3 Abstraction of Other Spatial Predicates 30
4.4 Universal List Segment Predicate for Nested Lists 31
4.5 Changes for Abduction . 32

5 Experiments 33

xiii

6 Conclusion 37

Bibliography 39

CHAPTER 1
Introduction

1.1 Motivation
Using dynamic data structures such as (doubly) linked lists, which can be circular and
nested in the C programming language is error-prone. Pointer arithmetic may be used
to achieve a more efficient implementation, which can cause nasty programming errors
as well. These complex lists are used for instance in the Linux kernel. Therefore static
analysis techniques for these lists are of practical relevance.

1.2 State of the Art
In the past different static analysis methods for C-code manipulating linked lists have
been developed. They detect invalid memory access, double-free errors and memory leaks
(which occur when allocated memory is not freed at program exit). These techniques
analysing dynamic pointer-linked data structures are called Shape Analysis and are known
as specifically hard to design.

Most of the existing approaches have different drawbacks such as a lack of support for
low-level pointer operations or a low-level of automation and are therefore not applicable
in practise. [HPR+22]

The tool Broom is able to overcome many of these issues. The source code is written in
OCaml and publicly available 1 under GNU GPLv3. Broom is a sound static analyser
that either finds memory-related bugs or determines for each function a contract, which
consists of a pre- and post-condition. This contract reflects the absence of invalid memory
access, double-free errors and memory leaks. The pre- and post-conditions are specified
in a special flavour of Separation Logic with inductive list predicates and describe the

1https://pajda.fit.vutbr.cz/rogalew/broom

1

https://pajda.fit.vutbr.cz/rogalew/broom

1. Introduction

configuration of the heap and stack on a byte-precise level. As an example look at figure
1.1. Read the *-operator - for simplicity - as a logical "and". The predicate x �→ y is the
points-to predicate stating that at address x value y is stored. With this semantics the
contract specifies exactly the behaviour of the store-operator in C.

void store(int *x, int y){

*x = y;
}

Figure 1.1: Simple store-function with P ≡ x = X ∗ y = Y ∗ X �→ z and Q ≡
x = X ∗ y = Y ∗ X �→ Y

The analysis process of Broom can be described as follows. For each basic statement in a
function there is a contract specified. To obtain a contract for a whole function, Broom
symbolically executes each statement following the function’s control flow graph and
iteratively tries to extend the contract. To avoid that this symbolic execution diverges
for loops, Broom needs to automatically generate inductive loop invariants. Typically
these loop invariants contain inductive list predicates. For instance the list predicate
ls(ε1, ε2) states that there is a singly-linked list of length l (with l ≥ 0) from a block
located at address ε1 to a block located at address ε2. The example in figure 3.1 shows a
simple loop traversal where the loop invariant is ls(x, null).

In fact Broom got inspired by the functionalities of the Predator analyzer [DPV13] but
aims at removing one of its major limitations: The need that the input program is closed,
which means that it contains a main function as unique entry point. To that end Broom
first analyses the functions at the bottom of the call tree and uses the computed contracts
to analyse functions higher up in the call tree (which currently prevents Broom from
analysing recursive functions). The ability to analyze open programs is crucial because
the necessity to provide a main function as entry point requires programmers to write
harnesses initializing all data structures.

One well-known analyser which is capable of dealing with open programs and was also an
inspiration for Broom is the Infer analyser [CD11]. Similarly to Broom, Infer is based on
Separation Logic and Bi-abduction. However the variant of Separation Logic used in this
thesis allows for more precise reasoning as also seen in section 2.3. Additionally Infer has
the drawback that it is not very complete (as also seen in the experiments of [HPR+22]).

1.3 Problem Statement
Unfortunately Broom is still a prototype. One of its issues is its low performance: The
analysis is very time-consuming such that analysing even quite simple functions such as
a function traversing nested lists is intractable.

Another issue of Broom is that the set of lists which can be modeled and analysed is
relatively limited. This is related to the fact that the abstraction procedure, which

2

1.4. Methods

generates the loop invariants, is quite basic. For instance it does not support lists with
shared nodes/data elements, which are common in C system code (see e.g. [BCC+07]).
For these lists we have for each node a pointer to a unique allocated block.

The aim of this thesis is to improve Broom’s analysis capabilities by tackling the above
mentioned problems. To this end we have to identify the reasons why the performance of
the analysis process is low and have to implement techniques resolving the underlying
problems. Secondly we introduce support for lists with shared nodes/data elements.
This is non-trivial because these types of lists cannot be represented with our current
definition of Separation Logic.

1.4 Methods
The methodological approach contains extensive testing of Broom. First we need to
do systematic experiments to delimit the reasons for Broom’s low performance. After
designing improvements for the underlying problems on an abstract level, we implement
them in Broom’s source code. Finally we again perform experiments with Broom on a
set of benchmark instances which mostly come from the Predator benchmark suite to
evaluate the efficacy of the improvements. We will designate a certain set of benchmark
instances which can be handled due to the improvements implemented.

1.5 Contributions
In our initial experiments we found out that for programs whose functions have multiple
contracts and for programs with a deep function call tree such as the program traversing
a nested list, the main reason for Broom’s low performance is related to an explosion of
the state space. We describe this problem in section 3.1. In sections 3.2, 3.3 and 3.4 we
see how we can tackle this state space explosion by implementing pruning strategies.

In section 4.1 we describe how the Separation Logic used to specify contracts was extended
in order to allow Broom modelling of lists with shared nodes. In the following sections
4.2 and 4.3 we give the first detailed description of the abstraction procedure of Broom,
which also includes the changes implemented in order to support the altered syntax
of the Separation Logic. In [HPR+22] the abstraction procedure was not described in
detail, which is why people not knowing the source code of Broom had difficulties in
understanding some problems related to abstraction. One of these problems is described
in section 4.4: Some shapes of nested lists could not be abstracted which resulted in a
diverging analysis process for these lists.

In section 5 we will finally give some sample C-files, which are mostly taken from the
benchmark suite for the Predator analyser. These benchmark instances should illustrate
the increased variety of lists which can be analysed thanks to the changes implemented.

3

CHAPTER 2
Preliminaries

In this section we will define everything described in the previous section more formally
mostly summing up [HPR+22].

2.1 Memory Model

In order to define the operational semantics of the C programming language as our
low-level language we need to define a memory model. With that memory model we will
define how the stack and heap evolves by executing a basic statement. Later we will
also use this memory model to define the contracts (P, Q) of whole functions in a special
flavour of Separation Logic.

Our analysis should reason about programs on a byte-precise level. Therefore we define
the set of values V al as sequences of bytes. For a machine with an N -byte architecture
we can then designate the set of memory locations Loc ⊆ V al as the set of all N -byte
words.

With these definitions we can define configurations in our memory model as stack-block-
memory triplets (S, B, M). Let V ar be a set of variables. Additionally each variable
x ∈ V ar has a constant positive size denoted size(x), which determines the number of
bytes used by x.

Stack. S represents the stack and is a total function V ar → V al. So S(x) is a sequence
of bytes of length size(x).

Blocks. B represents the set of allocated blocks in the heap. That is a set of intervals
{ [l, u) | 0 < l < u where l, u ∈ Loc} which is non-overlapping. The constraint 0 < l
ensures that there cannot be a block allocated at address null.

5

2. Preliminaries

Memory. M : Loc ⇀ Byte is a partial function defining the contents of allocated
memory locations. We have that for every ℓ ∈ Loc s.t. M(ℓ) is defined, there is a block
[l, u) ∈ B s.t. ℓ ∈ [l, u)

2.2 Operational Semantics of the Low-level language
Using the memory model defined in the previous section we can define the operational
semantics of our low-level language. Our low-level language is close to the intermediate
languages produced by common C compilers such as gcc or clang. We assume a type
checker which checks that the LHS and RHS for assignments are compatible.

To illustrate the operational semantics, we will just give the semantics of the store-operator
(used in figure 1.1). We use M [ℓ, ℓ′) to denote the byte sequence M(ℓ)M(ℓ+1) · · · M(ℓ′−1).
For a (partial) function f , f [a �→ b] denotes the (partial) function identical to f up to
f [a �→ b](a) = b. The full specification of the low-level language with its semantics is
given in [HPR+22].

(S, B, M) ∗x:=y−−−→ if bB(S(x)) = 0 or S(x) + size(y) > eB(S(x)),
then error else (S, B, M [[S(x), S(x) + size(y)) �→ S(y)])

The functions bB, eB : Loc → Loc return the base or end address, respectively, of a block
in B to which a given location belongs. More formally: Given some ℓ ∈ Loc, bB(ℓ) = l in
case there is some [l, u) ∈ B with ℓ ∈ [l, u). Otherwise bB(ℓ) = 0. Likewise for eB(ℓ)

2.3 Separation Logic
In the following we will introduce a Separation Logic which will allow us to define
contracts for functions of our low-level language such as the contract defined in figure 1.1.

The semantics of the Separation Logic uses the memory model defined in section 2.1.

The syntax for a formula φ is given as:

φ ::= ε1 �→ ε2 | ε1 �→ k[ε2] | ε1 �→ ⊤[ε2] | φ1 ∗ φ2 | ϕ1 ∨ ϕ2 | lsΛ(x,y)(ε1, ε2) |
dlsΛ(x,y,z)(ε1, ε2, ε′

1, ε′
2) | emp | true | ε1 ▷◁ ε2 | ∃x.φ

▷◁ ::= =|̸=|≤|<|≥|> ε ::= k | x | b(ε) | e(ε) | uop ε | ε1 bop ε2

The unary operator uop and binary operator bop can be the following set of operators
of common low-level languages: +, −, ∗, &, |. Additionally there is a concatenation
operator ⊙ on byte sequences. We call x, y and z variables, k a constant, ε, ε1, ε′

1, ε2,
ε′

2 expressions and φ1 and φ2 formulas. We call predicates of form ε1 ▷◁ ε2 pure and
points-to predicates as well as list predicates spatial predicates.

6

2.3. Separation Logic

We will first define the formal semantics w.r.t. SBM triplets and then explain it
informally. However we will only give the semantics of the separating conjunction
operator ∗ as well as the ls and dls predicate. We chose the separating conjunction
operator as an illustrative example. The list predicates are presented because their
semantics will be extended in section 4.1. The exact semantics of the other operators
can be found in [HPR+22].

(S, B, M) |= φ1 ∗ φ2 iff there are M1, M2 with M = M1 ⊎ M2, (S, B, Mi) |= ϕi

In fact the separating conjunction operator φ1 ∗ φ2 has more properties than a simple
logic "and". It requires that the heap M can be split into two disjoint sub-heaps M1, M2
s.t. (S, B, M1) |= φ1 and (S, B, M2) |= φ2. For points-to predicates ε1 �→ ε′

1 in φ1 and
ε2 �→ ε′

2 in φ2 this means that the byte sequences ε′
1 and ε′

2 are non-overlapping in M .
Notice that in our setting of Separation Logic we use a per-field separating conjunction.
Therefore we define fields of object structures to be non-overlapping which allows us
to reason about programs on a precise level. This is a big improvement compared to
a per-object separating conjunction that has been used in e.g. in [CDOY11] and in the
Infer analyser.

(S, B, M) |= lsΛ(a,b)(ε1, ε2) iff (S, B, M) |= ε1 = ε2 or
(S, B, M) |= ε1 ̸= ε2 ∗ true and there is some ℓ ∈ Loc

and a fresh variable u ∈ Var s.t.
(S[u �→ ℓ], B, M) |= Λ(ε1, u) ∗ lsΛ(a,b)(u, ε2)

As one can see in the definition above the singly-linked list predicate ls is parameterized by
a formula Λ. We call Λ the list segment predicate because it expresses local information
for each list segment/node. The list segment predicate has form Λ(a, b) ≡ ∃x1, ...xk.φ
where φ is quantifier-free and does not contain the disjunction operator ∨. With these
restrictions we can describe data fields in blocks or even nested lists as we will see in
section 3. For instance the list segment predicate for the structure defined in figure 3.1
would be simply Λ(a, b) ≡ a �→ b. If we add to the structure a data field, we would have
Λ(a, b) ≡ ∃d.a �→ b ∗ a + 8 �→ d ∗ b(a) = b(a + 8).

Coming back to definition of lsΛ(ε1, ε2) we see that a list from node ε1 to ε2 is either
empty or there is a node fulfilling Λ at ε1 which is linked to a tail list lsΛ(u, ε2). As the
definition of ls uses a the ls predicate itself, it is an inductive definition. The meaning of
the list predicates is also depicted in figure 2.1.

(S, B, M) |= dlsΛ(x,y,z)(ε1, ε2, ε′
1, ε′

2) iff (S, B, M) |= ε1 = ε′
2 ∗ ε2 = ε′

1 or
(S, B, M) |= ε1 ̸= ε′

2 ∗ ε2 ̸= ε′
1 ∗ true and there is some ℓ ∈ Loc

and a fresh variable u ∈ Var such that
(S[u �→ ℓ], B, M) |= Λ(ε1, u, ε2) ∗ dlsΛ(x,y,z)(u, ε1, ε′

1, ε′
2)

7

2. Preliminaries

x y ...

ε1 ε2

Λ(x, y)

y x z ...

ε2 ε1 ε′
1 ε′

2

Λ(x, y, z)

Figure 2.1: An illustration of lsΛ(x,y)(ε1, ε2) and dlsΛ(x,y,z)(ε1, ε2, ε′
1, ε′

2)

The definition of the dls predicate is very similar to the definition of the ls predicate. We
notice that the list segment predicate Λ has three parameters, because the current node
is linked to the predecessor and the successor node. The parameters of the dls predicate
allow to describe different types of doubly-linked lists: For instance a circular list has
ε1 = ε′

1 and ε2 = ε′
2.

2.4 Bi-Abduction
So far we only defined the semantics of our low-level language and the Separation Logic
which we will use to define contracts of functions. However we have only informally
discussed in the introductory section how Broom generates these contracts.

We first need to determine contracts defining the semantics of all basic statements of
our programming language (which we will also model as functions) in order to infer a
contract for a whole function. We will not give the complete list of contracts for the basic
statements but refer again to [HPR+22]. As an example the contract of the store function
is shown in figure 1.1. All contracts created by Broom have form (C, D1 ∨ ... ∨ Dl) where
C, D1, ..., Dl are formulas in our Separation Logic not containing disjunction.

Let f(x1, ..., xn) be the function for a basic statement in our low-level language and let
(P, Q) be a contract for f . (P, Q) is sound, which means that for all triplets (S, B, M)
s.t. (S, B, M) |= P and all executions of f that start from (S, B, M) and end in some
configuration (S′, B′, M ′) we have that (S′, B′, M ′) |= Q.

This follows directly from the semantics of our low-level language as stated in section 2.2.

In general the set of variables Var can be partitioned into two sets: The set of logical
variables LV ar and the set of program variables PV ar. For a function f(x1, ..., xn)
we always have {x1, ..., xn} ⊆ PV ar. In C LV ar covers all local variables while PV ar
contains the function parameters and all global variables.

Let us first focus on functions f whose function calls have contracts with conjunctive post-
conditions. Furthermore assume that f does not use branching and looping. Therefore
we can see f as a sequence s1, ..., sn of function calls. In section 2.5 we will lift all these
constraints.

As already stated in the introductory section, the symbolic execution iteratively extends
an initial state (Pinit, Qinit) for all function calls s1, ..., sn. In each step this state reflects
a sound contract for the function up to a specific function call si. To extend a state and

8

2.4. Bi-Abduction

symbolically execute one function call si = g(y1, ..., ym) we have to perform bi-abduction:
Let (C, D) be the contract for g and Q ≡ ∃UQ.Qfree ∗ Qfree ∗ Qeq, so we split Q into its
pure and spatial part. We also split D: D ≡ ∃UD.Dfree ∗ Deq. The bi-abduction problem
is given by

Qfree ∗ [?] |= C ′ ∗ [?]

where C ′ ≡ (C[ai/yi])[εj/xj] and Qeq ≡ x1 = ε1 ∗ ... ∗ xn = εn

So we construct C ′ by instantiating all parameters y1, ..., ym by their actual values
a1, ..., an in the function call and "apply" Qeq by renaming which gives us a formula
without any program variable x1, ..., xn, y1, ..., ym.

We can see that in the bi-abduction problem there are two formulae computed: The
missing formula on the LHS of the entailment is called antiframe and is denoted by M .
Intuitively it represents the additional constraint needed to safely execute si. The missing
formula on the RHS is called frame, denoted by F , and represents the part of the heap
that stays untouched by si. Using the computed antiframe and frame we can update our
state:

Pafter := M ∗ P

Qafter := ∃UQafter
.Q′

free ∗ Q′
eq

where UQafter
= (var(Q′

free ∗ Q′
eq) ∩ LV ar) \ var(Pafter), Q′

free = F ∗ Dfree and Q′
eq is

constructed from Deq for variables which are passed to g and from Qeq for variables
which are not passed to g. For later use we write biabduct(P, Q, g(a1, . . . , am), C, D) if
we apply one step of the bi-abduction procedure as explained.

The computation of the frame and antiframe in the abduction process is done using a set
of abduction rules. As a deeper understanding of this computation is not required in the
remaining sections, we refer the interested reader to [HPR+22]. There you can also find
a soundness proof for the bi-abduction procedure.

Before we explain the general setting of symbolic execution for functions with branching
and functions with disjunctive post-conditions we need to define the following:

Let C1 = (P1, Q1) and C2 = (P2, Q2) be contracts or (intermediate) symbolic states. We
have

(P1, Q1) ⊑ (P2, Q2)

⇔
∃LV ar(P1).P1 |= ∃LV ar(P2).P2 and ∃LV ar(Q1).Q1 |= ∃LV ar(Q2).Q2

where LV ar(φ) = var(φ) ∩ LV ar.

If C1 ⊑ C2, we say that C2 covers C1.

9

2. Preliminaries

2.5 Symbolic Execution
In this section we will remove the constraints from the previous section that contracts
are disjunctive and that functions are a sequence of function calls. Instead of a list of
function calls we are now given a control flow graph (CFG) with (V, E, entry, exit) where
edges are labeled by a function call. The entry/exit points of the CFG are denoted by
entry, exit ∈ V respectively. There are also special cut-points Vcut ⊆ V that represent
loop headers. Additionally there is a mapping symb(v) which stores for each node v a
list of states. This mapping symb(v) is maintained in the symbolic execution by the
following worklist algorithm:

1 procedure symbol ic_execut ion ((V, E, entry, exit), Pinit, Qinit) :
2 symb(entry) := {(Pinit, Qinit)}
3 l et v ∈ V be some node which needs to be proce s s ed
4 foreach (v, v′) ∈ E
5 l et g(a1, ..., ak) be the func t i on l a b e l f o r (v, v′)
6 l et C(g) be the s e t o f c on t r a c t s f o r func t i on g
7 foreach (C, D1 ∨ ... ∨ Dl) ∈ C(g)
8 f o r i = 1 to l
9 (Pafter, Qafter) := biabduct (P, Q, g(a1, ..., ak), C, Di)

10 i f v′ ∈ Vcut

11 foreach (P, Q) ∈ symb(v′)
12 i f ((Pafter, Qafter) ⊑ (P, Q))
13 break
14 symb(v) := symb(v) ∪ {(α(Pafter), α(Qafter))}
15 else
16 symb(v) := symb(v) ∪ {(Pafter, Qafter)}
17 goto 3

Listing 2.1: Pseudocode for the symbolic execution algorithm

In the algorithm α is an abstraction procedure which replaces spacial predicates by ls
or dls predicates. The abstraction procedure is described in detail in chapter 4. On one
hand abstracting states means losing information like the length of the list but on the
other hand this is crucial for termination of the analysis of loops. This is connected to the
second requirement needed for termination of loop analysis: The need to do entailment
checks in line 12. We call these entailment checks invariant checks because they check
whether a newly created state is already covered by a state in symb(v′). If this is true, we
can safely discard (Pafter, Qafter). Notice that the code presented is Broom’s standard
symbolic execution algorithm. However you can adjust Broom’s behaviour by passing
an option which will make Broom perform abstraction before entailment checks. An
example of how the analysis of a loop proceeds is given in figure 3.2.

The implementation of entailment checks will not be described in this thesis as it is
not required for the understanding of the further sections. However in [HPR+22] it is
described how entailment checking was reduced to bi-abduction.

10

2.5. Symbolic Execution

Notice that executing one round of the worklist algorithm in Listing 2.1 does not give
sound contracts for a function f but only a set of contracts whose pre-conditions are
candidate preconditions. Following [CDOY11], Broom implements a two-round analysis
for functions with branching:

1 procedure symbol ic_execution_branching (G = (V, E, entry, exit)) :
2 // round 1
3 l et Pinit ≡ Qinit ≡ x1 = X1 ∗ ... ∗ xn = Xn

4 l et (P1, Q1), ..., (Pk, Qk) = symbol ic_execut ion (G, Pinit, Qinit)
5 l et C(f) = ∅
6 // round 2
7 f o r i = 1 to k
8 l et Pinit ≡ Qinit ≡ Pi

9 l et (Pi, Q1), ..., (Pi, Ql) be the r e s u l t o f
10 symbol ic_execut ion (G, Pinit, Qinit) with
11 requirement M = emp in biabduct
12 C(f) := C(f) ∪ (Pi, Q1 ∨ ... ∨ Ql)
13 return C(f)

Listing 2.2: Pseudocode for the two-round analysis of functions with branching

In Listing 2.2 we can see that in the first round we only generate candidate preconditions
for a function f . In the second round we use these pre-conditions as initial states and do
not allow the strengthening of the pre-conditions in biabduct(·). If therefore biabduct fails,
we discard this pre-condition. On success we return the sound contract (Pi, Q1 ∨ ... ∨ Ql).

Notice that in the second phase for a given pre-condition Pi, Broom internally stores
for each possible post-condition Qj (with j = 1, ..., l) computed for Pi, a new contract
(Pi, Qj) instead of a single contract (Pi, Q1 ∨ ... ∨ Ql). This facilitates the abduction
application for a given contract without changing the semantics. To be consistent with
Broom’s behaviour, we will also replace disjunctive contracts by multiple contracts not
containing the disjunction in the following section.

11

CHAPTER 3
Enhancing Symbolic Execution

In section 3.1 we will outline Broom’s current problems when analyzing functions dealing
with (nested) lists. These problems are mostly related to the state space explosion. In
section 3.2 there will be a pruning strategy for contracts and states defined. Implementing
these optimizations will drastically improve the running time and allow Broom to analyze
functions traversing nested lists.

In the following we use ls(ε1, ε2) and dls(ε1, ε2, ε′
1, ε′

2) instead of lsΛ(ε1, ε2) and dlsΛ(ε1, ε2, ε′
1, ε′

2)
if the exact definition of Λ is irrelevant or implicit.

3.1 Motivation
As one can see in [HPR+22], where the analysis of the loop traversal function in figure
3.1 is described, there will be typically several contracts created for functions with loops.

In [HPR+22] we see that the set of contracts computed after the first analysis phase is
given by:

• C1 = (P1 ≡ X = null ∗ x = X, Q1 ≡ X = null)

• C2 = (P2 ≡ X �→ null ∗ x = X, Q2 ≡ X �→ null)

• C3 = (P3 ≡ ls(X, null) ∗ X ̸= null ∗ x = X, Q3 ≡ ls(X, null) ∗ X ̸= null)

Contracts C2, C3 require the run of the second analysis phase, because they are retrieved
from symbolic executions which traversed the loop body. In the following we will show
how the second analysis round evolves. We will only show here the post-conditions as
the pre-conditions do not change in the second round.

13

3. Enhancing Symbolic Execution

struct sll {struct sll *next;};

void loop(struct sll *x){
while(x!=NULL){

x=x->next;
}

}

Figure 3.1: Simple list traversal

The second run for C2 will initially evaluate x!=NULL to true because this can be derived
from P2. The loop body will be symbolically executed which will give us symbolic state
Q ≡ X �→ null ∗ x = null. When now the loop header x!=NULL is evaluated according
to P2, the result will be false and the second run will terminate with contract C ′

2 = C2.

The second run of contract C3 is a bit more complex. It is schematically depicted in figure
3.2. Again x!=NULL will initially be evaluated to true, so the loop body will be executed
ending up in symbolic state Q ≡ X �→ L1 ∗ ls(L1, null) ∗ x = L1. When reaching the
loop header again, we do the invariant checks and execute abstraction function α which
both fail. As we now cannot derive x!=NULL, we do a case distinction: For the branch
of x = L1 = null, we stop symbolic execution and obtain final contract C ′

3 = (P3, X �→
L1∗ls(L1, null)∗L1 = null) which can be simplified to C ′

3 = (P3, X �→ null) because of L1 =
null and the semantics of the ls predicate for empty lists. If L1 ̸= null, we again execute the
loop body obtaining symbolic state Q ≡ X �→ L1 ∗ L1 �→ L2 ∗ ls(L2, null) ∗ x = L2. Again
we do invariant checks and perform abstraction. The invariant checks fail, but abstraction
succeeds and we get Q ≡ ls(X, L2) ∗ ls(L2, null) ∗ x = L2. We cannot derive x!=NULL, so
similarly to the former iteration we have to do case distinction: If x = L2 = null, we stop
symbolic execution and obtain contract C ′′

3 = (P3, ls(X, L2)∗ls(L2, null)∗L2 = null) which
can be simplified to C ′′

3 = (P3, ls(X, null)). If L2 ̸= null we again execute the loop body
obtaining symbolic state Q ≡ ls(X, L2) ∗ ls(L3, null) ∗ L2 �→ L3 ∗ x = L3. When finally
reaching again the loop header, we do invariant checks, which succeed because we have
∃L2∃L3. ls(X, L2) ∗ ls(L3, null) ∗ L2 �→ L3 ∗ x = L3 |= ∃L2. ls(X, L2) ∗ ls(L2, null) ∗ x = L2.
Therefore the analysis is aborted and we have the following final contracts for the function
loop:

1. C1 = (X = null ∗ x = X, X = null)

2. C ′
2 = (X �→ null ∗ x = X, X �→ null)

3. C ′
3 = (ls(X, null) ∗ x = X ∗ X ̸= null, X �→ null)

4. C ′′
3 = (ls(X, null) ∗ x = X ∗ X ̸= null, ls(X, null))

14

3.1. Motivation

ls(X, null) ∗ X ̸= null ∗ x = X

ls(X, null) ∗ X ̸= null ∗ x = X

X �→ L1 ∗ ls(L1, null) ∗ x = L1

X �→ null X �→ L1 ∗ ls(L1, null) ∗ L1 ̸= null ∗ x = L1

X �→ L1 ∗ L1 �→ L2 ∗ ls(L2, null) ∗ x = L2

ls(X, L2) ∗ ls(L2, null) ∗ x = L2

ls(X, null) ls(X, L2) ∗ ls(L2, null) ∗ L2 ̸= null ∗ x = L2

ls(X, L2) ∗ ls(L3, null) ∗ L2 �→ L3 ∗ x = L3
STOP - entailment!

x != NULL

x = x → next

x = NULL x != NULL

x = x → next

α

x = NULL x != NULL

x = x → next

Figure 3.2: Execution of the second analysis round of simple list traversal code (see figure
3.1) for contract C3 with P ≡ ls(X, null) ∗ X ̸= null ∗ x = X

15

3. Enhancing Symbolic Execution

All in all we see that the second analysis phase is very similar to the first analysis phase.
The main difference is that in the first analysis phase the pre-condition is strengthened
whereas in the second phase the post-condition is strengthened.

Now consider the code for traversing a nested loop in figure 3.3.

struct outer_sll {
struct outer_sll *next;
struct sll *nested;

};

void outer_loop(struct outer_sll *x){
while(x!=NULL){

loop(x->nested);
x=x->next;

}
}

Figure 3.3: Simple traversal of a list and its nested lists

How would Broom analyze function outer_loop which traverses each nested list?

In the first analysis phase the initial state S0 will be branched for x!=NULL. So the
contract (X = null ∗ x = X, X = null) will be created. This is the only contract
which does not require a second run. The other branch will evolve to a symbolic
state S′

0 = (X ̸= null ∗ x = X, X ̸= null ∗ x = X). Whenever loop(x->nested) is
symbolically executed, each state is split into four new successor states because there are
four final contracts calculated for the function loop. Therefore after executing the loop
body, we obtain states S1,1, S1,2, S1,3, S1,4 describing a single node with a possibly empty,
singleton or non-empty nested list. When the symbolic execution reaches the loop header
again, entailment checks and abstraction fail. So we start from the beginning and branch
again for x!=NULL. This will create candidate contracts C1,1, C1,2, C1,3, C1,4 for the case
x = null. For the case x ̸= null we continue with states S′

1,1, S′
1,2, S′

1,3, S′
1,4. The symbolic

execution will branch them in the loop body to new states S2,1, ..., S2,16 and abstraction
will succeed on these states because they describe two consecutive nodes. Branching for
x!=NULL at the loop header node will finally give us candidate contracts C2,1, ..., C2,16.
After one more loop iteration the entailment check for all 16 · 4 = 64 states will succeed.
So all in all the first analysis round will give us 16 + 4 = 20 candidate contracts which
need a second run. The process is schematically depicted in figure 3.4.

When trying to run the second phase for each candidate contract, we will encounter
the same exponential blowup. So we would have to expect 20 · 20 = 400 final contracts
and 20 · 16 · 4 = 1280 succeeding entailment checks. Knowing that abstraction and
entailment checks are quite costly, we can easily see that executing this is infeasible. In
fact the real computation effort is even higher because in some symbolic states abstraction

16

3.2. Pruning of Contracts

S0

C0 S′
0

S1,1

C1,1 S′
1,1

S1,2

C1,2 S′
1,2

S1,3

C1,3 S′
1,3

S1,4

C1,4 S′
1,4

Figure 3.4: Schematic computation tree for first analysis round of nested list traversal
code (see figure 3.3) with all four contracts for inner loop (see page 14)

cannot succeed after two iterations as loop(x->nested) creates a dummy variable
for x->nested which will become a program variable pointing to the nested list of the
second node.

3.2 Pruning of Contracts
It is clear that many of the contracts that Broom computes are redundant. Some of
them are even syntactically equivalent. The plan is to remove as many contracts as
possible without compromising soundness and by just using program functionalities
already implemented - entailment checks and abstraction.

The idea is the following: If C1 ⊑ C2, it is safe to remove C1, because all program
executions covered by C1 are already covered by C2. By doing this we can prune the
set of contracts for a function without compromising soundness nor increasing the false
positive rate.

In our two-round analysis this pruning works as follows. At the end of the first analysis
round, we check for each pair of contracts (C1, C2) with C1 = (P1, Q1) and C2 = (P2, Q2)
if C1 ⊑ C2 and remove C1 if this holds. If additionally C2 ⊑ C1 holds, C1 and C2 are
semantically or even syntactically equivalent. In this case we remove only one of C1 and
C2. However after the first analysis phase we do not perform both entailment checks as
given in the definition of C1 ⊑ C2, but we only check ∃LV ar(P1).P1 |= ∃LV ar(P2).P2
which is justified by the fact that we drop the post-conditions Q1, Q2 anyway when we
start the second analysis round.

We do something similar at the end of the second analysis round: We check for each
pair of contracts (C1, C2) if C1 ⊑ C2 and remove C1 if this holds. Again we can do an
optimization reducing the number of entailment checks needed: To determine C1 ⊑ C2 it
is sufficient to check P1 = P2 and ∃LV ar(Q1).Q1 |= ∃LV ar(Q2).Q2. This is justified by
the fact that ∃LV ar(P1).P1 |= ∃LV ar(P2).P2 holds in the second phase only if P1 = P2

17

3. Enhancing Symbolic Execution

as otherwise C1 or C2 would have been pruned after the first analysis round.

To illustrate that, consider the new execution for the simple loop example in figure 3.1:

After the first run of the analysis we see that C2 = (X �→ null ∗ x = X, X �→ null) ⊑
C3 = (ls(X, null) ∗ X ̸= null ∗ x = X, ls(X, null) ∗ X ̸= null) holds. In fact as we are in
the first analysis round, we only see the entailment for the pre-conditions. Therefore we
discard contract C2 and only proceed with contracts C1 and C3.

At the end of the second run we will detect C ′
3 = (ls(X, null) ∗ X ≠ null ∗ x = X, X �→

null) ⊑ C ′′
3 = (ls(X, null) ∗ X ̸= null ∗ x = X, ls(X, null)). Therefore we discharge contract

C ′
3 and only get contracts C1 and C ′′

3 as final result for the loop function.

This reduction from four to two contracts for the loop function greatly reduces the
computation effort needed for the nested loop function in the second run because in each
iteration we do not branch into four but only into two sub-states. This allows Broom to
analyze the outer_loop function as described in the following.

The first analysis phase of the outer_loop function now proceeds as depicted in figure
3.5. In each loop iteration we again branch at the loop header x!=NULL. The symbolic
execution along the "else"-branch (where x = null holds) again immediately stops giving
a candidate contract, which does not require a second run. The other branch will execute
the loop body splitting symbolic execution into two sub-states because we are given
two contracts for the loop function. One sub-state will define an empty, the other a
non-empty nested list. This continues until the symbolic states contain two successive
nodes because this will allow abstraction to succeed.

After abstraction succeeds, one more iteration has to be performed (not depicted in figure
3.5): The abstracted symbolic states are branched at the loop header and four candidate
contracts defining null-terminated lists with nested lists are returned. The states following
the "if"-branch continue their symbolic execution and are again branched in the loop
body reaching finally states with P ≡ ls(X, L1) ∗ L1 �→ L2 ∗ L1 + 8 �→ null ∗ b(L1) =
b(L1 + 8) ∗ x = L2 and P ≡ ls(X, L1) ∗ L1 �→ L2 ∗ L1 + 8 �→ L3 ∗ ls(L3, null) ∗ b(L1) =
b(L1 + 8) ∗ L3 ̸= null ∗ x = L2. So we retrieve 2 · 4 = 8 states of that forms. When
reaching the loop header we do invariant checks which succeed for all symbolic states. At
this point the first phase for the analysis of outer_loop stops.

In figure 3.5 one can see that in the first round there are six candidate contracts created
which require a second run (two after the first iteration and four after the second iteration).
However contract Cnested = (lsΛ(X, null) ∗ X ̸= null ∗ x = X, lsΛ(X, null) ∗ X ̸= null) with
Λ(a, b) ≡ a �→ b ∗ a + 8 �→ c ∗ lsΛ′(c, null) ∗ b(a) = b(a + 8) and Λ′(a, b) ≡ a �→ b covers
each of the other five candidate contracts which require a second run. Therefore those
contracts will be pruned and only contract Cnested will require the run of the second
analysis phase.

The second run for contract Cnested is very similar to the first run. The only difference
in terms of the enumeration tree will be that at the initial state we will not branch for
x!=NULL because x ̸= null is given in Cnested’s pre-condition. So the second phase will

18

3.2. Pruning of Contracts

x = X

NULL

x = NULL
x != NULL

loop

x = NULL x != NULL

loop

α

loop

α

loop

x = NULL x != NULL

loop

α

loop

α

Figure 3.5: Computation tree for first analysis round of nested list traversal code (see
figure 3.3) with contracts C1, C ′′

3 for inner loop

19

3. Enhancing Symbolic Execution

yield the same six contracts as the first phase with the only difference that for all of them
we have pre-condition lsΛ(X, null) ∗ X ≠ null ∗ x = X. Therefore the pruning after the
second phase will again give exactly one contract which is equivalent to Cnested.

Finally we obtain contracts (X = null∗x = X, X = null) and Cnested for the outer_loop
function. This is in fact the same number of contracts as given for the loop function.
So the defined pruning strategy avoids an (exponential) blowup also w.r.t. the nesting
depth of a function. While before our improvements even the analysis of the nested list
example (of depth 1) was infeasible, Broom can now analyze a function traversing a list
with nesting depth two within approximately four minutes. Details about running times
are given in chapter 5.

3.3 Pruning of Intermediate States
In the previous section we described a strategy for pruning of (candidate) contracts (P, Q)
of a whole function. Notice that this set of contracts is different from the mapping symb
as defined in section 2.4. Most importantly for cut nodes v ∈ Vcut in our CFG, we do
the invariant checks w.r.t. symb(v). More precisely, if symbolic execution executes v on
(P, Q), we check if there is a state (P ′, Q′) s.t. (P, Q) ⊑ (P ′, Q′). If this succeeds, we
discard (P, Q), otherwise we apply abstraction and execute v on the abstraction result.

For states (P1, Q1), (P2, Q2) ∈ symb(v) we might have (P1, Q1) ⊑ (P2, Q2) just like for
the final/candidate contracts of a function. Therefore it makes sense to apply a similar
pruning strategy than the one for contracts: Whenever symbolic state (P, Q) reaches a
cut point v we do not only check if there is a (P ′, Q′) ∈ symb(v) s.t. (P, Q) ⊑ (P ′, Q′)
(invariant check) but we also check if (P ′, Q′) ⊑ (P, Q) and remove (P ′, Q′) from symb(v)
if this holds. This might happen for instance if P or Q is the result of a successful
abstraction and therefore describes lists of arbitrary length while P ′ or Q′ describes a
list of specific length or a list of special shape. In further iterations we can then avoid
entailment checks w.r.t. (P ′, Q′). For the pruning of the symbolic states, we can also
do a similar optimization as described in section 3.2: During the first analysis round we
check entailment only w.r.t. to the pre-condition and during the second analysis round
we check for equality of pre-conditions and entailment of post-conditions. Doing this
optimization is sound because if we cannot detect a loop invariant in symb(v) in a loop
iteration i, we also cannot detect an invariant in a subset of symb(v) for that iteration i,
so symbolic execution will not terminate in an earlier iteration due to that optimization.

3.4 Optimizing Traversal of States for Invariant Checks
In the original version of Broom when doing the invariant checks for state (P, Q) Broom
traversed symb(v) in a FIFO order. This means we first check entailment for states
(P ′, Q′) which were added earlier in the respective analysis round. However the states
which were added later are potentially more abstract than the states added before as we
apply abstraction within every iteration. Therefore the likelihoods that (P, Q) ⊑ (P ′, Q′)

20

3.4. Optimizing Traversal of States for Invariant Checks

succeeds for those states is higher and we implemented a LIFO traversal of symb(v) in
order to reduce the number of failing entailment checks.

21

CHAPTER 4
Enhancing list abstraction

In this chapter we will describe how we extended the list (segment) predicates to handle
lists with shared nodes (section 4.1). After that we describe the new abstraction procedure
of Broom in detail. It searches for pairs of points-to predicates, pairs of a points-to and a
list predicate and pairs of list predicates. In either case the respective spatial predicates
are replaced by a list predicate. Since the procedure for the second and third case is built
on top of the procedure for the first case, we first describe the case of abstracting two
points-to predicates in section 4.2. The other cases are described in section 4.3.

Generally the abstraction procedure α is a function that takes as input a formula φ and
returns a formula φ′ s.t. φ |= φ′. However in our case we do not want to lose information
about the current program variables PV ar = {p1, ..., pk} if they point to intermediate
nodes. This is why we need to know PV ar in the abstraction procedure. So in fact
α(φ, PV ar) is a binary function.

4.1 New List (Segment) Predicate
Originally our list predicates were of form lsΛ(a,b)(ε1, ε2) or dlsΛ(a,b,c)(ε1, ε2, ε′

1, ε′
2) where

Λ(a, b) or Λ(a, b, c) is of shape ∃x1, ..., ∃xk.φ and φ is a quantifier-free symbolic heap with
free variables a, b resp. a, b, c. This restriction prevents us from specifying non-global
objects referenced by various list nodes. Following the approach of [BCC+07] we extend
our logic to describe also this kind of objects by adding a parameter ϵ̄ to the parameters of
the list predicates. ϵ̄ = [ε̄1, ..., ε̄n] is a list of expressions which define addresses referenced
by all nodes of the respective list. To this end we call ϵ̄ the list of shared expressions.

With our new list predicates lsΛ(ε1, ε2, ϵ̄) and dlsΛ(ε1, ε2, ε′
1, ε′

2, ϵ̄) there arises a need of
extending the list segment predicates Λ as well. For each shared expression we add a
new parameter si to Λ (with i = 1, ..., n).

23

4. Enhancing list abstraction

The ordering of the shared expressions in the list predicate gives us the correspondence
of the additional parameters of the lambda to the shared expressions. Therefore for ls
predicates the list segment predicate is of form Λ(a, b, s1, ..., sn) and for dls predicates
the list segment predicate is of form Λ(a, b, c, s1, ..., sn).

The semantics of the list predicates ls and dls are re-defined in the following way:

(S, B, M) |= lsΛ(x,y,s1,...,sn)(ε1, ε2, ϵ̄) iff (S, B, M) |= ε1 = ε2 or
(S, B, M) |= ε1 ̸= ε2 ∗ true and there is some ℓ ∈ Loc

and a fresh variable u ∈ V ar s.t.
(S[u �→ ℓ], B, M) |= Λ(ε1, u, ϵ̄) ∗ lsΛ(x,y,s1,...,sn)(u, ε2, ϵ̄)

(S, B, M) |= dlsΛ(x,y,z,s1,...,sn)(ε1, ε2, ε′
1, ε′

2, ϵ̄) iff
(S, B, M) |= ε1 = ε′

2 ∗ ε2 = ε′
1 ∗ true or (S, B, M) |= ε1 ̸= ε′

2 ∗ ε2 ̸= ε′
1 ∗ true

and there is some ℓ ∈ Loc and a fresh variable u ∈ V ar s.t.
(S[u �→ ℓ], B, M) |= Λ(ε1, u, ε2, ϵ̄) ∗ dlsΛ(x,y,z,s1,...,sn)(u, ε1, ε′

1, ε′
2, ϵ̄)

Broom relies on a procedure for materialising nodes out of a list segment on several
places. Materializing means handling the case where (S, B, M) |= ε1 ̸= ε2 ∗ true or
(S, B, M) |= ε1 ≠ ε′

2 ∗ ε2 ≠ ε′
1 ∗ true respectively. The materialization is used for

instance for the rules slseg-pt-ls-left and slseg-pt-ls-right but also in the
abstraction process when trying to abstract a node and a list segment into a single list
segment. With the new list (segement) predicates the materialization procedure was
updated following the new semantics.

4.2 Abstraction of Points-to Predicates

Figure 4.1: General setting for abstracting two points-to predicates

We will now give the procedure abstracting pairs of points-to predicates to list predicates.
For a better understanding, the description is only semi-formal and contains figures for

24

4.2. Abstraction of Points-to Predicates

the different cases. Overall the abstraction procedure is divided into a pairing procedure,
which pairs fields of blocks s.t. their offsets are equal and a checking procedure which
checks if two fields "behave in a compatible way".

Pairing procedure

Given an input formula φ and a list of program variables PV ar, the pairing procedure
checks for each pair of points-to predicates (ε �→ ζ, ε′ �→ ζ ′) in φ if ε, ε′ can be linking
fields for two nodes:

1. Check VALIDITY of size(ζ) = size(ζ ′)

2. Check VALIDITY of b(ζ) = b(ε′)

3. Check SATISFIABILITY of b(ε) ̸= b(ε′)

4. Check SATISFIABILITY of ε − b(ε) = ε′ − b(ε′)

5. Assume VALIDITY of 3. and 4.

6. Check SATISFIABILITY of b(ε′) ̸= b(x) with x ∈ PV ar

7. Try to pair all n points-to predicates defining the blocks located at b(ε) and
b(ε′) obtaining pairs of form (εi �→ ζi, ε′

i �→ ζ ′
i) with εi = b(ε) + offseti and

ε′
i = b(ε′) + offseti and 0 ≤ offseti ≤ e(ε) − b(ε) = e(ε′) − b(ε′) for i = 1, ..., n.

Exclude the linking fields ε and ε′ because their compatibility is already checked.
So in the underlying queries of the paring procedure we

a) check SATISFIABILITY of εi − b(ε) = ε′
i − b(ε′)(= offseti)

b) check SATISFIABILITY of size(ζi) = size(ζ ′
i)

8. For i = 1, ..., n call the checking procedure with (εi �→ ζi, ε′
i �→ ζ ′

i) which is defined
below

The fact that in some queries we only check for SATISFIABILITY even tough it seems
that VALIDITY is required comes from the necessity to handle intrusive lists and Linux
lists: For these lists we have to deal with incomplete information because we only know
b(ε) ≤ ε for a list node field ε.

Checking procedure

To describe the checking procedure we have to define the following set: Let F (ε) be the
set of forward links for expression ε. This is the set of points-to predicates of form ε′ �→ _
and list segment predicates of form ls(ε′, _, _), dls(ε′, _, _, _, _) such that b(ε′) = b(ε).

25

4. Enhancing list abstraction

We compute F (ζi) and F (ζ ′
i). To this end we check for each spatial predicate in φ if it is

contained in one of these sets. Therefore we perform the VALIDITY queries as given in
the definition of F (·).
For the sets F (ζi) and F (ζ ′

i) the checking procedure continues in the following cases:

• F (ζi) = F (ζ ′
i) = ∅

Case: Data field

Figure 4.2: Case F (ζi) = F (ζ ′
i) = ∅: Data field

The constraint F (ζi) = F (ζ ′
i) = ∅ mans that εi and ε′

i are not fields pointing to an
allocated block but are both data fields storing numeric constants ζi, ζ ′

i (which can
have value ⊤). Let a be the first parameter of the lambda. If checking VALIDITY
of ζi = ζ ′

i succeeds, we add to the respective (partial) lambda a + offseti �→ ζi.
Otherwise a + offseti �→ ⊤ is added.

• F (ζi) ̸= ∅, F (ζ ′
i) ̸= ∅

This constraint itself does not imply compatible behaviour, so sub-cases need to be
distinguished.
Sub-case: Field pointing to node itself

Figure 4.3: Sub-case of F (ζi) ̸= ∅, F (ζ ′
i) ̸= ∅: Pointers point "back" to same node

26

4.2. Abstraction of Points-to Predicates

If the following checks succeed, we know that fields εi and ε′
i point "back" to the

blocks located at b(ε) resp. b(ε′).

1. Check VALIDITY of b(ζi) = b(ε)
2. Check VALIDITY of b(ζ ′

i) = b(ε′)
3. Check SATISFIABILITY of ζi − b(ζi) = ζ ′

i − b(ζ ′
i)

No we can add to the respective (partial) lambda a + offseti �→ a + (ζi − b(ζi)).
Sub-case: Field points to shared object

Figure 4.4: Sub-case of F (ζi) ̸= ∅, F (ζ ′
i) ̸= ∅: Pointers pointing to a shared node

To detect the case that εi and ε′
i point to the same shared allocated block ζi, our

enhanced abstraction checks

1. VALIDITY of ζi = ζ ′
i

We can now add a fresh variable u to the respective (partial) lambda’s parameters
together with the constraint a + offseti �→ u. Additionally we need to add ζi to ϵ̄,
which is the list of shared expressions for the list segment predicate which will be
finally obtained after the folding.
Sub-case: Backward field of doubly-linked list segment

Figure 4.5: Sub-case of F (ζi) ̸= ∅, F (ζ ′
i) ̸= ∅: Doubly-linked list segment

27

4. Enhancing list abstraction

If the following checks succeed, we can conclude that ε′
i points to an address ζ ′

i with
base b(ε), which means that ε′

i is the back link field of a doubly-linked list node.

1. Check SATISFIABILITY of b(ζi) ̸= b(ζ ′
i)

2. Check SATISFIABILITY of ζi − b(ζi) = ζ ′
i − b(ζ ′

i)
3. Check VALIDITY of b(ζ ′

i) = b(ε)
4. Check SATISFIABILITY of b(ζi) ̸= b(ε)

Therefore we have to fold at the end of the abstraction procedure into a dls predicate
instead of a ls predicate. Additionally we have to add a parameter c to our (partial)
lambda together with the constraint a + offseti �→ c + (ζi − b(ζi)). Notice that we
do not check compatibility with the block located at b(ζi). This is fine because at
the end of the abstraction procedure ζi will be passed to the second parameter of
dls and when materializing nodes out of a doubly-linked list we do not instantiate
the second parameter following the semantics of dls as described in section 4.1.
Sub-case: Field pointing to a nested object

Figure 4.6: Sub-case of F (ζi) ̸= ∅, F (ζ ′
i) ̸= ∅: Nested node

To check if we εi and ε′
i point to compatible nested structures, we first need to do

the following base checks:

1. Check SATISFIABILITY of b(ζi) ̸= b(ζ ′
i)

2. Check SATISFIABILITY of ζi − b(ζi) = ζ ′
i − b(ζ ′

i)

Unfortunately there are different shapes of nested objects which need different
treatment. Let Pi ∈ F (ζi) and P ′

i ∈ F (ζ ′
i) (here it does not matter which element

from the sets you choose).
Depending on the types of Pi and P ′

i , different checks need to be performed:

28

4.2. Abstraction of Points-to Predicates

– Pi = η �→ θ and P ′
i = η′ �→ θ′

1. Check SATISFIABILITY of b(η) ̸= b(x) with x ∈ PV ar

2. Check SATISFIABILITY of b(η′) ̸= b(x) with x ∈ PV ar

Now we do the same pairing as in the pairing procedure’s point 7. However
instead of ε and ε′, we use η and η′ and we also include the points-to predicates
η �→ θ and η′ �→ θ′. So if the pairing process succeeds for all m fields, we will
be given pairs (ηl �→ θl, η′

l �→ θ′
l) for all l = 1, ..., m. Then we call the checking

procedure recursively.

– Pi = lsΛ(η1, η2, ϵ̄) and P ′
i = lsΛ′(η′

1, η′
2, ϵ̄′)

To check if the two nested lists lsΛ(η1, η2, ϵ̄) and lsΛ′(η′
1, η′

2, ϵ̄′) are compatible
we first check if Λ and Λ′ are compatible. If Λ |= Λ′, we proceed with Λnew = Λ′

and if Λ′ |= Λ, we proceed with Λnew = Λ. Otherwise we fail.
Then we have to

1. Check SATISFIABILITY of b(η1) ̸= b(x) with x ∈ PV ar

2. Check SATISFIABILITY of b(η′
1) ̸= b(x) with x ∈ PV ar

3. Check that there is a one-to-one correspondence between elements ε̄ ∈ ϵ̄
and ε̄′ ∈ ϵ̄′ s.t. checking VALIDITY of ε̄ = ε̄′ succeeds.

Now we consider two cases:

∗ F (η2) = F (η′
2) = ∅

This means the last elements of the nested list are not allocated blocks but
constants (for e.g. null-terminated lists). Therefore we check VALIDITY
of η2 = η′

2.
If this succeeds, we return (partial) lambda a+offseti �→ u∗lsΛnew(u, η2, ϵ̄)
for a fresh variable u. Otherwise we return a+offseti �→ u∗lsΛnew(u, ⊤, ϵ̄)

∗ F (η2) ̸= ∅, F (η′
2) ̸= ∅

This means η2 and η′
2 are allocated blocks. Therefore we check if the lists

are circular by
1. Checking VALIDITY of b(η1) = b(η2)
2. Checking VALIDITY of b(η′

1) = b(η′
2)

Finally the (partial) lambda a + offseti �→ u ∗ lsΛnew(u, u, ϵ̄) is returned

– Pi = dlsΛ(η1, η2, η3, η4, ϵ̄) and P ′
i = dlsΛ′(η′

1, η′
2η′

3, η′
4, ϵ̄′)

This case is very similar to the previous case with Pi = lsΛ(η1, η2, ϵ̄) and P ′
i =

lsΛ′(η′
1, η′

2, ϵ̄′). There are just some additional checks ensuring compatibility
of both endpoints. From a conceptual point of view, describing this in detail
is not very interesting. So we do not explain this here in further detail.

• F (ζi) = ∅, F (ζ ′
i) = {lsΛ(η1, η2, _)} or

F (ζi) = {lsΛ(η1, η2, _)}, F (ζ ′
i) = ∅

29

4. Enhancing list abstraction

Case: Field pointing to possibly empty nested list
This case corresponds to the two states in the middle at the bottom of the tree in
figure 3.5, where one nested list is empty and the other list is non-empty. Assume
w.l.o.g. F (ζi) = ∅, F (ζ ′

i) = {lsΛ(η1, η2, _)}.
We have to

1. Check VALIDITY of ζi = null

In this case our abstraction assumes ζi to be an empty list with the same shape as
the nested list of ζ ′

i. This does not compromise soundness because lsΛ(null, null, _)
is valid and we only make the state more abstract. By our assumption we return
the (partial) lambda a + offseti �→ u ∗ lsΛ0+(u, η2). The definition of Λ0+ is given
in section 4.4.
When looking at figure 3.5 one can see why this case needs to be considered within
abstraction for the nested list example. If we only merge pairs of nested points-to
predicates and pairs of nested list predicates for F (ζi) and F (ζ ′

i), we cannot abstract
the two states in the middle. So these states would be expanded further giving
infinitely long lists where nodes with empty and non-empty nested lists alternate.
This would prevent Broom from terminating for the nested list example.

After the procedure finished, we need to remove from φ all predicates associated to nodes
b(ε1) and b(ε′), which are the nodes traversed by the checking procedure. We replace
these predicates by lsΛ(b(ε), ζ ′, ϵ̄) or dlsΛ(b(ε), εb, b(ε′), ζ ′, ϵ̄) where Λ is the list segment
predicate returned by the checking procedure and εb is the back link of node b(ε) which
was discovered in the checking procedure.

4.3 Abstraction of Other Spatial Predicates
Within symbolic execution it might be necessary to abstract states whose pre- or post-
conditions define heaps of form lsΛ(ε1, ε2, ϵ̄) ∗ ε2 �→ ε3 due to e.g. some global vari-
able preventing abstraction in a former iteration. There might even arise cases where
lsΛ1(ε1, ε2, ϵ̄1) ∗ lsΛ2(ε2, ε3, ϵ̄2) needs to be abstracted. The same holds of course for
dls predicates but we focus here for simplicity on ls predicates because the described
procedure can be easily extended for dls predicates.

• Abstraction of ε1 �→ ε2 and lsΛ(ε′
1, ε′

2, ϵ̄) in formula φ

1. Check VALIDITY of b(ϵ2) = b(ε′
1)

2. Check SATISFIABILITY of b(ε2) ̸= b(x) with x ∈ PV ar

If the checks succeed, we materialize one node out of lsΛ(ε′
1, ε′

2, ϵ̄) obtaining a
formula φ′ where lsΛ(ε′

1, ε′
2, ϵ̄) is replaced by Λ(ε′

1, u, ε̄1, ...ε̄n) for a fresh variable
u. Then we pair points-to predicates like in our pairing procedure in section 4.2.

30

4.4. Universal List Segment Predicate for Nested Lists

However we use as linking fields ε1 and the linking field in Λ(ε′
1, u, ε̄1, ...ε̄n). On

success, this will give us pairs (εi �→ ζi, ε′
i �→ ζ ′

i) as defined on page 25. So we can
call the checking procedure which will succeed only if the node located at b(ε1)
is compatible with Λ. In the end we erase from φ′ all spatial predicates which
were traversed by the checking procedure and are therefore associated to b(ε1).
Additionally we replace Λ(ε′

1, u, ε̄1, ...ε̄n) by lsΛ(ε1, ε′
2, ϵ̄) and return the resulting

formula.

• Abstraction of lsΛ(ε1, ε2, ϵ̄) and ε′
1 �→ ε′

2 in formula φ

As this case can be treated analogously to the former case (just the names of the
variables differ), we do not explain it here.

• Abstraction of lsΛ(ε1, ε2, ϵ̄) and lsΛ′(ε′
1, ε′

2, ϵ̄′) in formula φ

This case is different from the other cases but can be handled very easily:

1. Check VALIDITY of ε2 = ε′
1

2. Check SATISFIABILITY of b(ε2) ̸= b(x) with x ∈ PV ar

3. Check that there is a one-to-one correspondence between elements ε̄ ∈ ϵ̄ and
ε̄′ ∈ ϵ̄′ s.t. checking VALIDITY of ε̄ = ε̄′ succeeds.

If Λ |= Λ′, we return lsΛ′(ε1, ε′
2, ϵ̄) and if Λ′ |= Λ we return lsΛ(ε1, ε′

2, ϵ̄). Otherwise
abstraction fails.

4.4 Universal List Segment Predicate for Nested Lists
In figure 3.5 we did not make the parameters of the ls predicates explicit. In this section
we will do that because this shows another interesting issue which needed to be solved in
order to allow Broom analyze the nested list example. In the first analysis phase when
abstraction succeeds, we would get in fact three different list segment predicates.

According to our abstraction procedure the first symbolic state (from the left) with
P ≡ Q ≡ X �→ L1 ∗ X + 8 �→ L2 ∗ b(X) = b(X + 8) ∗ lsΛn(L2, null) ∗ L2 ̸= null ∗ L1 �→
L3 ∗L1 +8 �→ L4 ∗ lsΛn(L4, null)∗L4 ̸= null∗b(L1) = b(L1 +8)∗x = L3 will be abstracted
to lsΛ1+(X, L3) ∗ x = L3 where Λn(a, b) ≡ a �→ b and Λ1+(a, b) ≡ a �→ b ∗ a + 8 �→
c ∗ lsΛn(c, null) ∗ c ̸= null ∗ b(a) = b(a + 8). The abstraction result obtained from the
last state in that iteration (the rightmost state) with P ≡ Q ≡ X �→ L1 ∗ X + 8 �→
null ∗ b(X) = b(X + 8) ∗ L1 �→ L3 ∗ L1 + 8 �→ null ∗ b(L1) = b(L1 + 8) ∗ x = L3 is given by
lsΛ0(X, L3) ∗ x = L3 where Λ0(a, b) ≡ a �→ b ∗ a + 8 �→ null ∗ b(a) = b(a + 8). To obtain a
sound abstraction procedure when abstracting the other two states, we can neither use
Λ0 nor Λ1+ because the obtained list is neither always empty nor always non-empty. So
we need to find some list segment predicate which is more abstract than both Λ0 and
Λ1+. To this end we define Λ0+(a, b) ≡ a �→ b ∗ a + 8 �→ c ∗ ls(c, null) ∗ b(a) = b(a + 8)
which will be the list segment predicate used for these two states as depicted in figure

31

4. Enhancing list abstraction

lsΛ1+(X, ·)
α

lsΛ0+(X, ·)
α

lsΛ0+(X, ·)
α

lsΛ0(X, ·)
α

Figure 4.7: Abstraction of the states in figure 3.5 with list segment predicates

4.7. In fact Λ0+ is obtained by removing constraint c ̸= null from Λ1+ and describes a
lists whose nested lists can be empty.

The existence of various list segment predicates itself is not problematic because Broom
has a procedure to determine whether Λ |= Λ′ for some list segment predicates Λ, Λ′ used
within the entailment checks and abstraction procedure. In fact the introduction of Λ0+ is
necessary to get a succeeding invariant check for all computation branches for the nested
list example. In the loop iteration after abstraction success we would have originally
had symbolic states with P ≡ Q ≡ lsΛ(X, L3) ∗ L3 �→ L5 ∗ L3 + 8 �→ null ∗ b(L3) =
b(L3 + 8) ∗ x = L5 and symbolic states with P ≡ Q ≡ lsΛ(X, L3) ∗ L3 �→ L5 ∗ L3 + 8 �→
L6 ∗ ls(L6, null) ∗ L6 ≠ null ∗ b(L3) = b(L3 + 8) ∗ x = L5 where Λ ∈ {Λ0, Λ1+}. Consider
for instance state (P, Q) with P ≡ Q ≡ lsΛ1+(X, L3) ∗ L3 �→ L5 ∗ L3 + 8 �→ null ∗ b(L3) =
b(L3 + 8) ∗ x = L5: We neither have (lsΛ0(X, L3) ∗ x = L3, lsΛ0(X, L3) ∗ x = L3) ⊑ (P, Q)
nor (lsΛ1+(X, L3) ∗ x = L3, lsΛ1+(X, L3) ∗ x = L3) ⊑ (P, Q).

4.5 Changes for Abduction
By adding an additional parameter to the list predicates there arises the need to change
some abduction rules as well. However this only requires small changes for abduction
rules which create new list predicates. For the slseg-ls-ls-rule and the analogous
version for the dls predicate we need to add to the LHS the constraint that the list of
shared expressions for the matched lists are equal. Therefore the slseg-ls-ls-rule is
re-defined as

slseg-ls-ls
φ ∗ ε̄1 = ε̄1′ ∗ ... ∗ ε̄n = ε̄n

′ ∗ [M] ▷ ψ ∗ lsΛ′(ζ, ζ ′, [ε̄1, ..., ε̄n])
φ ∗ lsΛ(ε, ζ, [ε̄1, ..., ε̄n]) ∗ [M] ▷ ψ ∗ lsΛ′(ε′, ζ ′, [ε̄1′, ..., ε̄n

′])
C

where C is the constraint φ |= ε = ε′ ∗ true and Λ |= Λ′.

The abduction rules slseg-pt-ls-right and slseg-pt-ls-left (as well as their
analogous version for dls predicates) rely on materialization. So they change implicitly
as the materialization procedure changes as described in section 4.1.

32

CHAPTER 5
Experiments

In this section we will present some C-code examples which can be analysed by Broom due
to the changes described in this thesis. You can find a summary about the experiments
in table 5.1. All of these benchmark instances except for the files nested.c and nested-2.c
come from the Predator benchmark suite and can be found in 1 . The tests were run on
a machine with an Intel i7-4770 processor with 32 GiB of memory. We invoked Broom
with option –entailment-limit=7 which means that symbolic execution for loops aborts
after seven loop unfoldings. In the following we will provide some details about the test
files.

Name #Fncs Time [s] Infer
test-0227.c 2 31 ✓
test-0056.c 4 146 ✓
test-0233.c 2 34 ✗

sll-headptr.c 1 79 ✓
test-0192.c 4 277 ✓

nested.c 2 254 ✓
nested-2.c 3 570 ✓

Table 5.1: Test files which can be verified by Broom thanks to the changes implemented,
their number of functions, the running time in seconds which Broom needed for the
analysis and an indication whether the Infer analyser was able to generate correct
contracts

In the test file test-0227.c a singly-linked list of length at least two is allocated. Every
node points to a shared data element.

The file test-0056.c is similar but allocates a doubly-linked list of arbitrary length where
each node points to a shared data element.

1https://pajda.fit.vutbr.cz/rogalew/broom/-/tree/master/tests/new

33

https://pajda.fit.vutbr.cz/rogalew/broom/-/tree/master/tests/new

5. Experiments

The test file test-0233.c is also similar but it allocates a non-empty singly-linked list
where each node points to a special shared list node which is allocated when the first
node is allocated.

In the test file sll-headptr.c we allocate a singly-linked list in which every node has a
pointer to the list head. Once allocated, we just iterate over the list. Broom constructs
formulas of shape lsΛ(h, null, [h]) where h represents the shared head node and Λ(a, b, c) ≡
a �→ b ∗ a + 8 �→ c. The allocated list is depicted in figure 5.1. Here one can see that
shared nodes may also be part of the list itself.

Figure 5.1: Shape of the list allocated in test file sll-headptr.c which is abstracted to a
list with the list head as shared node

In test-0192.c we can see an example of a list which can be analyzed thanks to the
pruning of contracts. The main function creates a list of length three which has nested
lists of arbitrary length. In the original version of Broom for the function creating
the nested lists (create_hlist) we would have nine contracts after the second anal-
ysis round. The function insert_vlist_node which calls create_hlist would
then have 18 contracts because it contains one if-statement. As create_vlist calls
insert_vlist_node three times, we would have 183 = 5832 contracts computed for
the create_vlist function which is infeasible. If we apply pruning, create_vlist
has a total of nine contracts describing all 23 = 8 combinations of empty or non-empty
nested lists plus one extra contract where the boolean variable real_nested_list is
set to false.

The example shows that the state space explosion problem does not only appear for
programs with nested loops. In general the more complex a program and the deeper
its function call tree, the more contracts will be created. Therefore we expect that the
implemented optimizations will become relevant for more benchmark instances once
Broom supports more complex lists.

Before implementing the optimizations Broom was unable to verify these test files. In
the case of nested.c and nested-2.c, Broom could not terminate because of its inability
to abstract nested lists with a specific shape (see section 4.4). Here the states which
were generated up until the seventh loop iteration got very complex which is why Broom
needed 2637 s (approx. 44 min) to abort for nested.c. In the case of the test files related
to shared nodes, abstraction could not succeed either in any loop iteration. However

34

as here the states did not get as complex as for the experiments with nested.c, analysis
aborted quite fast. For instance the analysis for test-0227.c aborted after 79 s.

Concerning the running time it is clear that an increase in the nesting depth of a list
increases the running time. However as one can see in table 5.1, the increase is not
exponential. For a simple loop traversal as depicted in figure 3.1 the analysis only takes
seconds. For the analysis of nested.c we need 254 s while for the analysis of the outermost
loop of nested-2.c (itself) we need (570 - 254) = 316 s which is not much longer than the
analysis of the nested loop (of depth 1). This comes from the fact that for all of these
functions we only obtain two contracts after the pruning. Considering that in the initial
version of Broom even the analysis of nested.c was infeasible, we see the efficacy of the
pruning strategies defined.

Concerning the pruning of intermediate states of the mapping symb as described in
section 3.3, the experiments for nested.c show that the optimization reduces the maximum
cardinality of symb(v) from 11 to 7 where v is the cut point in function outer_loop as
defined in figure 3.3. As this is only a small decrease and the pruning of symb(·) comes
at the cost of performing additional entailment checks, the experiments could not show
an improvement in running time. The pruning mostly pays off if symb(·) contains a lot
of elements which is not yet the case for our still quite simple examples. However as we
can reuse a lot of code already implemented for the pruning of contracts and we have to
expect that the mapping symb grows once Broom can analyse more complex code, we
decided to keep that optimization.

Finally we also invoked the Infer analyser (version 1.1.0) on our benchmark instances.
The list predicates used by Infer also contain a list with references to shared allocated
blocks. Therefore it is not surprising that Infer is able to generate contracts which are
similar to the contracts generated by Broom for most of our examples. The only example
for which Infer could not generate contracts is test-0233.c. The output of Infer shows
that the analysis fails in the loop which destroys the allocated list when applying Infer’s
join operator.

35

CHAPTER 6
Conclusion

The goal of the thesis was to improve the capabilities of the static analyser Broom. This
tool creates for each C-function a set of contracts in a Separation Logic with inductive
list predicates if the function is memory safe.

We identified the state space explosion problem as the main reason why Broom’s analysis
is very time-consuming for programs whose functions have many contracts and programs
with a deep function call tree. Therefore we implemented a pruning strategy reducing the
number of contracts after the first and second analysis phase and showed theoretically
and experimentally that this can drastically decrease the running time. In fact the state
space explosion originally prevented Broom from analysing nested lists, because Broom
would have needed to compute over 400 contracts. After applying the pruning we only
obtain two contracts for functions traversing nested lists of any depth. This results in an
almost linear increase of running time w.r.t. nesting depth of the list. Additionally we
could reduce the number of entailment checks performed within pruning of contracts and
invariant checking: It turned out that it suffices to only check entailment between the
pre-conditions in the first analysis phase resp. between the post-conditions in the second
analysis phase.

Furthermore we extended the list predicates used in our Separation Logic such that
Broom can now also analyse lists with pointers to shared non-global heap objects. To
this end we also needed to add a new sub-case into the abstraction procedure. As our
experiments show, these lists also include lists where each node has a pointer to dedicated
(head) nodes.

During our analysis of the nested list example we also encountered an interesting issue
which prevented Broom from successfully analysing the nested list examples and is related
to abstraction: If the first node has an empty and the second node has a non-empty
nested list, we need to abstract this to a list whose nested lists are possibly empty. In this
case in fact we applied an early version of a join operator. This is a well-known operator

37

6. Conclusion

from static analysis tools (e.g. [DPV13]) which returns for each pair of states S1, S2 a
state S s.t. S ⊑ S1 and S ⊑ S2. Implementing this operator in future work may not only
be required for termination of some examples but would also further reduce the number
of contracts created by Broom. For example the function traversing a list as depicted in
figure 3.1 could be described with the single contract (ls(X, null) ∗ x = X, ls(X, null)) but
Broom currently returns two contracts (one for the empty and one for the non-empty
list).

Another problem which shall be resolved in future work is the traversal of the Linux lists:
As currently the abstraction procedure requires a one-to-one correspondence between
all fields of the first and the second node, abstraction fails for Linux lists because the
block boundaries are unknown. We plan to resolve this by defining separate "fields" for
the padding at the beginning and end of a block ε. For these padding fields the size
parameter can be parametric to b(ε) and e(ε). Finally adding support for numerical
abstractions in future work would make Broom applicable for more real-world benchmark
instances.

38

Bibliography

[BCC+07] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and
H. Yang. Shape Analysis for Composite Data Structures. In Proc. of CAV’07,
volume 4590 of LNCS. Springer, 2007.

[CD11] C. Calcagno and D. Distefano. Infer: An Automatic Program Verifier for
Memory Safety of C Programs. In Proc. of NFM’11, volume 6617 of LNCS.
Springer, 2011.

[CDOY11] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape
Analysis by Means of Bi-Abduction. Journal of the ACM, 58(6), 2011.

[DPV13] K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level
List Manipulation. In Proc. of SAS’13, volume 7935 of LNCS. Springer, 2013.

[HPR+22] L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and
F. Zuleger. Low-Level Bi-Abduction. Technical report, VUT Brno,
https://arxiv.org/abs/2205.02590, 2022.

39

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	State of the Art
	Problem Statement
	Methods
	Contributions

	Preliminaries
	Memory Model
	Operational Semantics of the Low-level language
	Separation Logic
	Bi-Abduction
	Symbolic Execution

	Enhancing Symbolic Execution
	Motivation
	Pruning of Contracts
	Pruning of Intermediate States
	Optimizing Traversal of States for Invariant Checks

	Enhancing list abstraction
	New List (Segment) Predicate
	Abstraction of Points-to Predicates
	Abstraction of Other Spatial Predicates
	Universal List Segment Predicate for Nested Lists
	Changes for Abduction

	Experiments
	Conclusion
	Bibliography

		2023-01-20T19:42:40+0100
	Signature Box
	Florian Franz Zuleger
	Signature

