Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Automatic Identification of
Cross-Container Side-Channels

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Jakob Baumgartner, BSc
Matrikelnummer 01607460

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar R. Weippl
Mitwirkung: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Wien, 11. November 2019

Jakob Baumgartner Edgar R. Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Automatic Identification of
Cross-Container Side-Channels

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Jakob Baumgartner, BSc
Registration Number 01607460

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Edgar R. Weippl
Assistance: Univ.Lektor Dipl.-Ing. Dr.techn. Georg Merzdovnik, BSc

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Vienna, 11" November, 2019

Jakob Baumgartner Edgar R. Weippl

w Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Jakob Baumgartner, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. November 2019

Jakob Baumgartner


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Danksagung

Ich mo6chte mich bei Franziska Bollwein bedanken, dass sie mich immer motiviert hat,
auch wenn ich dachte, ich hétte bessere Dinge zu tun. Durch ihre Ausdauer konnte ich
laufend Fortschritte erzielen in den letzten Monaten. Ich mochte auch meinen Eltern
danken, dass sie mir dieses Studium ermoglichten. Des Weiteren danke ich Benjamin
Bock fiir das Korrekturlesen dieser Diplomarbeit.

Ein besonderer Dank geht an Georg Merzdovnik fiir die initiale Idee dieser Arbeit und
fiir seine professionellen Ratschldge. Er nahm sich immer Zeit fiir mich, um den aktuellen
Fortschritt und meine Fragen zu besprechen.

vii


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Acknowledgements

I want to thank Franziska Bollwein for keeping me motivated when I thought I had better
things to do. Thanks to her endurance I was able to continuously make progress in the
last months. I also want to say thanks to my parents who made it possible for me to
study. Furthermore, I want to thank Benjamin Bock for proofreading this thesis.

Special thanks go to Georg Merzdovnik for the initial idea of this work and for his
professional advice. He always had time for me to discussion the current progress and
my questions.

ix


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Kurzfassung

In den letzten Jahren stieg die Beliebtheit von Docker und anderen Container-Loésungen in
vielen Unternehmen an. Da diese die Container-Software flir immer mehr Applikationen
verwenden, sind sie auch abhéngig von der Sicherheit der eingesetzten Container-Losung.
Ziel jedes Containers ist die Bereitstellung eines eigenen isolierten Sub-Systems, indem
eine Applikation, gebiindelt mit ihren Abhéngigkeiten, ausgefiihrt werden kann. Im
Falle von Docker teilen sich alle Container den Betriebssystem-Kernel des Hosts. Es
existieren dokumentierte Moglichkeiten, um die Kommunikation zwischen zwei Containern
zu erlauben, wie zum Beispiel Netzwerkverbindungen und Shared Volumes. Allerdings
konnte ein potentieller Side-Channel durch den Kernel existieren, wobei es in diesem Fall
moglich sein konnte, dass ein Container die Existenz eines anderen Containers ermittelt,
vertrauliche Daten ausliest oder das Verhalten eines anderen beeinflusst.

In dieser Arbeit wird ein neuartiges System vorgestellt, welches Interaktionen zwischen
zwei Containern erkennen kann. Mithilfe eines System-Call-Fuzzers wird ein vollautoma-
tisiertes System entwickelt, das zur Auffindung von Side-Channels in aktuellen Versionen
von Linux und Docker verwendet wird. Dabei werden die Dynamic-Taint-Analysis-
Funktionen von PANDA verwendet, einer quelloffenen Reverse-Engineering-Plattform.
Das System wechselt dabei zwischen einer Aufzeichnung des Gastsystems mit zwei System-
Call-Fuzzern in zwei verschiedenen Containern und der Analyse der Aufzeichnung ab.
Sollten Findings wiahrend der Analyse auftreten, so wird die Aufzeichnung und die dazu-
gehorige Log-Datei fiir eine spatere manuelle Analyse abgespeichert. Des Weiteren werden
periodisch Statusinformationen mitgeloggt. Diese Logeintrige enthalten den aktuellen
RAM-Bedarf des Systems, die Grée der Log-Datei und den Fortschritt der Analyse der
Aufzeichnung.

Obwohl nach Wochen des Betriebs keine Schwachstellen gefunden wurden, wurde gezeigt,
dass das System mit idealisierten Tests funktioniert. In diesen Tests werden die Container
mit erweiterten (nicht default) Berechtigungen gestartet. Alle Komponenten wurden
so konzipiert, dass sie unabhéngig von der eingesetzten Container-Losung und dem
System-Call-Fuzzer sind. Mithilfe eines anderen Setups kann das System unveréndert fiir
den Einsatz mit anderen Container-Losungen verwendet werden. Des Weiteren kann die
entwickelte Software auch als Basis fiir andere Information-Leak-Analysen dienen, wie
zum Beispiel fiir Forschungen zu Linux-Applikations-Sandboxen und LSM-Profilen.

X1


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

In recent years, Docker and other container engines became very popular in many
companies. These companies are starting to rely on the security of the containerization
software as they are used for more and more applications. Each container should run as
its own isolated subsystem, where each application can be bundled with its dependencies.
In case of Docker, all containers on a single host share the same operating system
kernel. There are documented ways to allow communication between two containers,
for example, network connections and shared volumes. However, there is a potential for
side-channels over the kernel, where one container could discover the existence of another,
read confidential data, or influence its behavior.

In this thesis, we develop a novel system that detects interactions between two containers.
With the help of a system call fuzzer, we build a fully automated system to look for these
kinds of side-channels in current versions of Linux and Docker. It uses the dynamic taint
analysis capabilities of PANDA, an open source platform for reverse engineering. Our
system alternately creates whole system recordings of two system call fuzzers running
in two different containers and then analyzes them. If any findings occur, the current
recording and the affiliated log file are stored for later manual analysis. Furthermore,
status information of the running system is periodically logged. This includes the current
RAM usage, log file size and analysis progress of a recording.

Although no vulnerabilities were found after weeks of running the system, we proved the
functionality with idealized tests where the containers are started with additional (non-
default) permissions. We designed the whole system independently from the container
engine and system call fuzzer. Therefore, with a different setup it can be used to find
communication between containers in other engine implementations. In addition, it can
build the basis for finding information leaks in other types of software, like in research of
Linux application sandboxes and LSM profiles.

Xiii


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung
Abstract
Contents

1 Introduction

1.1 Motivation . . . . ... ... ... ... ......
1.2 Problem Statement . . . . . . .. ... ... ....
1.3 Aimofthe Work . . ... ... ... ... .....
1.4 Threat Model . . . . . ... ... ... .......
1.5 Structure of the Work . . . . ... ... ... ...

2 State of the Art

Contents

2.1 Cross-Container and Cross-VM Side-Channel Attacks . . . .. .. ..

2.2 Taint Analysis . . .. ... ... ... ... ...
2.3 System Calls Fuzzers . . . . . .. .. ... .. ...

3 Background

3.1 Container Virtualization . . . . . .. ... ... ..
3.2 Technologies of Linux Containers . . . . . . .. ..
3.3 Taint Analysis with PANDA . . .. ... ... ..
3.4 Linux System Call Calling Conventions . . . . ..

4 Methodology

4.1 Tainting System Call Input Data . . . . . ... ..
4.2 Detection of Cross-Container Tainted Data . . . .
4.3 Taint Labels. . . . . . ... ... ... .......
4.4 Automation Strategies . . . . . .. ... ... ...

5 Implementation Details

5.1 System Overview . . . . . .. .. ... ... ....
5.2 PANDA Version . ... .. ... ... .. .....

5.3 Retrieving the Currently Running Fuzzing Process

xi

xiii

=W W NN

oo Ut Ot

10

13
13
17
24
28

29
29
30
30
30

33
33
34
34

XV


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.4 Tainting System Call Registers and Kernel Reads . . . . . . .. .. ..
5.5 Checking System Call Returns and Kernel Writes . . . . . . ... ...
5.6 Dereferenced Pointer Patch . . . . . . ... ... 000
5.7 Uniquification of Findings and System Call Skipping . . . . . . . . ..
5.8 Optional Debugging Outputs and Debugging Aid . . . . .. ... ...
5.9 Reported Finding Information . . . . . . .. ... ... ... ... ...
5.10 Automation of Runs . . . . . . . .. ... ...

6 Evaluation and Results
6.1 Test Setup . . . . . . . .
6.2 Idealized Test Runs. . . . . . . . . . . . . ... .. ... ... .....
6.3 Early Fuzzing Attempts and False Positives . . . . .. ... ... ...
6.4 Results. . . . . . e

7 Discussion and Future Work
8 Conclusion

List of Figures

List of Algorithms

Listings

Abbreviations

Bibliography

35
36
37
38
38
39
39

43
43
44
49
52

55

59

61

63

65

67

69


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Introduction

Container technology plays an important role in modern DevOps collaborations. They
bridge the gaps between developers and operators by bundling the software with the
dependencies required for operation [1]. There exist several projects that provide software
for deploying software in containers. With increasing investments in containerization
software [2, 3] businesses start to rely on the security of those software solutions. Part
of container security is the ability to isolate processes from another. There are several
supported ways to allow communication between containers. In Docker!, for example,
communication channels can be established over a network connection? or shared volumes®.
However, there is a potential of side-channel attacks where communication is possible
although not allowed explicitly. With these attacks, it would be possible to discover
containers on the same host, gather identification from neighboring containers or influence

other containers.

One kind of side-channel could exist through the host operating system kernel because
the host and the containers share the same kernel [4]. Currently, tools for automated
identification of such side-channels through the kernel space do not exist. In this thesis, we
present a novel tool that is capable of detecting side-channel between isolated containers.
We show that the software we developed works as intended by creating tests with
known channels. Furthermore, we automate the tool to find vulnerabilities in a current
implementation of the Linux kernel and the Docker engine. Finally, we discuss the results
of this fuzzing run and possible future work.

"https://www.docker.com
?https://docs.docker.com/config/containers/container—-networking/
3https://docs.docker.com/storage/volumes/



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

1.1 Motivation

To our current knowledge, there has not been done any research that aims to perform
automated tests that analyze the isolation of containers. Research with similar goals
exist, for example, the cache mechanisms of modern CPUs can be used for an information
leakage attack [5, 6] and other hardware bugs were discovered [7, 8, 9, 10]. The shared
goal is the exfiltration or manipulation of data that is not accessible under normal
conditions. However, the main difference is that the approach of this thesis is purely
based on software, which is shared between isolated processes. Furthermore, our approach
can be deployed as an automated process to potentially look for new vulnerabilities in
newly developed software or in upcoming software releases. We propose that it is in
general not possible to build an automated system that can find unknown hardware bugs.

In the field of malware analysis, taint tracking approaches exist. However, they do not
deal with the isolation property of containers. Their focus is on user programs, which
would not be adequate for this thesis because it aims to find side-channels over the kernel,
which is not possible if the taint analysis does not include the operating system kernel.

This leads us to the development of a software that is capable to identify side-channels
between containers. Once identified they can be manually examined and software vendors
can develop a fix to mitigate the issue. This would improve the security for all users
of the container software. Moreover, the security of other container engines could be
improved by the same patches because they may rely on the same kernel technologies.

1.2 Problem Statement

As already mentioned, containers bundle programs with their dependencies. To achieve
this, the containers must isolate certain resources from another, like the mounted file
systems, processes IDs, hostname and users. In Linux, this isolation is done using
kernel namespaces. In addition to namespaces the security is improved with technologies
like capabilities, seccomp and LSM. These technologies are discussed in greater detail
in Chapter 3. Every software solution for containerization can come with its own
configuration of these technologies. Therefore, there exists the need to create an automated
software that is capable of testing whole systems. As far as we are aware of, currently
there is no software that can test a complete system for information leakage between two
(or more) containers once they are running.

We define the following research questions: Do side-channels between isolated
containers over the kernel currently exist and how could a system look like
that can automatically identify them?

To answers these questions, we are going to develop an automated approach that can
identify when one containerized application could influence the behavior of another
container.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.3. Aim of the Work

1.3 Aim of the Work

The overall aim of this work is to improve the security of containers, especially the
isolation property. This will be achieved by providing software that can automatically
identify cross-container side-channels. The developed software should run independently
of the used container engine and Linux distribution. Therefore, it will be possible to run
the software for future versions of the Linux kernel and container software with minimal
changes to the source code or the configuration. The syscall fuzzer, which is used to
call as many different system calls as possible, can be replaced too. Any other software
project that creates syscalls can be used.

The developed software should demonstrate that it is possible to identify the described
side-channels in an automated fashion. This means that the software should be able to
work with a setup provided by an operator and, if the described side-channels exist in
the system under test, identify and report them as they are discovered. Therefore, the
software must run stable if a valid configuration is provided. In this case, configuration
does not only mean the software configuration but also the attributes of the host system,
for example, enough memory must be provided.

The information outputted by the developed software will be sufficient to reconstruct
the activities that caused this side-channel to occur. With this information, it should be
feasible to find a possible solution to close this information leak.

1.4 Threat Model

There are different scenarios in which an adversary could benefit from the knowledge of the
described side-channels. One scenario would be the discovery of neighboring containers,
which would work with no direct write capabilities from the attacker’s container. The
knowledge about containers sharing the same physical machine can be used for further
attacks, like Denial of Service attacks, where it would be important to find the physical
target machine. In this scenario, an adversary could improve the effectiveness of such an
attack if, for example, the victim’s machines are deployed in a public IaaS cloud. The
adversary could start virtual machines in the same public cloud and then check if they
are located on the same physical host. If enough physical machines are discovered, such
that the adversary thinks an attack would be possible, then a local (on the same physical
machine) DoS attack could be started.

Another scenario exists when a potential attacker can influence the victim’s container. In
this case, attacks that are more intrusive may be possible. In a worst-case scenario, an
attacker would have full control over the other container and thus gain the permissions
of the victim container. The confidentiality, integrity and availability of the container’s
application would be affected significantly. Any other case where partial access to the
victim’s containers are possible are also conceivable.

The objective of this thesis does not include hardware bugs, for example, Meltdown [7]
and Spectre [8]. This further excludes cache information leakage problems, like the


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

INTRODUCTION

research of Zhang et al. [6] and HomeAlone [5], although many goals and the threat
model are partially the same. Both try to retrieve or alter information normally not
accessible due to security constraints. The focus of this works lies solely on the software
isolation implemented in the Linux kernel and the profiles provided by the container
engines.

1.5 Structure of the Work

The following chapters are structured as follows. In Chapter 2, State of the Art, we will
go through similar research, which may share the same goals. Furthermore, we examine
underlying research, which is necessary to complete this thesis, like syscall fuzzers and
dynamic taint analysis. In the Background chapter, Chapter 3, we discuss information
that is required to understand the technical details of container engines and the software
developed in this thesis. Often these topics are not the result of research but from
convention or chosen arbitrarily. Chapter 4 consists of a more theoretical view to explain
how the aim of this works is resolved. It intentionally leaves out implementation details
to focus on a proper approach to give answers to the research question. This is followed
by the Implementation Details, Chapter 5, which builds upon the methodology and goes
into details about the implementation. The results of multiple (test) runs are discussed in
Chapter 6 and this knowledge is used to reject further false positive findings. Furthermore,
we present the results of fuzzing runs in this chapter. In Chapter 7, Discussion and
Future Work, we discuss the results found and give ideas about possible future work.
The final chapter, Chapter 8, sums up the topic and the results.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the Art

To the best of our knowledge, there has not been any academic research or software
solution providing a mechanism for automated identification of cross-container side-
channels through the operating system kernel. However, there are other types of side-
channel attacks in the context of containers or virtual machines, which follow similar
goals. We discuss them in Section 2.1. Furthermore, prior research in other areas resulted
in software that can be used to solve the problem underlying this thesis.

2.1 Cross-Container and Cross-VM Side-Channel Attacks

Side-channels in the form of information leaks exist in previous versions of Docker.
Hertz [11] discovered a leak in the proc filesystem. The file /proc/sched__debug listed
information about all processes and was therefore not PID namespaced. Thus, it is
possible to exchange information between two containers by creating processes with
specific names. A process in the other container could then read the file to receive the
information stored in the process name. This issue was fixed in Docker in 2016".

The Docker engine before version 1.6.1 had issues with weak permissions for the dictionar-
ies /proc/asound, /proc/timer_stats, /proc/latency_stats, and /proc/fs. The vulnerability
CVE-2015-3630? allowed an attacker to gain sensitive information and to alter the host.

In older Docker versions, a breakout vulnerability, called shocker3, was discovered.
However, the issue is not unique to Docker and it should exist in every misconfigured
container. The proof of concept code demonstrates the vulnerability by reading the host’s
file /etc/shadow, which should not be accessible within the container. The main issue is
the capability CAP_DAC _READ_SEARCH [12], which allows the usage of the syscall

"https://github.com/moby/moby/pull/21263
?https://www.cvedetails.com/cve/CVE-2015-3630/
3http://stealth.openwall .net/xSports/shocker.c



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

open__by__handle__at [13]. With this syscall it is possible to circumvent file permission
checks and to read files that are opened by other processes. A detailed analysis of the
exploit can be found in [14].

Other types of Docker vulnerabilities exist, where the exploit is possible due to a specially
crafted container image or when the victim executes certain Docker commands?. As an
example for the first case, there is CVE-2019-5736°. With this vulnerability an attacker
could override the runC® executable if she previously had write access to an existing
container (and the container can be attached with docker exec”) or the image is under
the attacker’s control. The vulnerability affects all container engines that use runC, thus,
it is not a unique issue of Docker. Furthermore, the vulnerability CVE-2018-15664% is
an example for an issue caused by an external command. The Docker command cp?
was vulnerable to an attack, which allows attackers to read and write to files of the host
system with root privileges. However, these issues are not in the scope of this thesis
because they require external control of the container. The aim of this thesis, as already
stated in Chapter 1, is to perform automated analysis in already running containers and
focuses on the abilities an attacker has once she can execute code inside a container.

The research carried out by Zhang et al. [6] performed a cross-container side-channel
attack on a cloud PaaS. They developed an attack based on CPU cache to successfully
find neighboring tenants, gather sensitive user data and to break encryption. Their
approach is based on an attack called FLUSH+RELOAD [15], which targets a last level
cache. The basic technique is to flush out chunks (aligned memory regions of cacheline
size) which page is shared with the victim. Then an attacker waits for a certain time
while the victim may use a memory region with another CPU core. After this, the
adversary performs the reload part by reusing the same chunk. If the reload was fast,
then the victim accessed the suspected memory region, if not, the reload was slower and
no access was performed.

Zhang et al. developed HomeAlone [5], which also performs cache based analysis to find
physical neighboring virtual machines. It aims to create software that can be started on
an unmodified hypervisor to verify that no other virtual machines are running on the same
host. Without such an approach a tenant of a physically isolated machine has no way to
make sure that service is indeed isolated as promised by the service provider. The idea is
to minimize the usage of some cache regions. If unexpected activity would be measured,
then there could be another unknown application on the same host. However, in practice
there will always be some noise from scheduling operations and from the underlying
hypervisor. Their approach is based on the cache attack PRIME+PROBE [16, 17|, which
starts by priming cache sets with a specified data. Enough pages must be allocated in

“https://docs.docker.com/engine/reference/commandline/docker/
Shttps://www.cvedetails.com/cve/CVE-2019-5736/
Shttps://github.com/opencontainers/runc
"https://docs.docker.com/engine/reference/commandline/exec/
Shttps://www.cvedetails.com/cve/CVE-2018-15664/
https://docs.docker.com/engine/reference/commandline/cp/


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.1. Cross-Container and Cross-VM Side-Channel Attacks

order to prime any cache set. After a wait time the attacker checks the time required to
access memory of a mapping to a certain cache set. If the access was slow, then a cache
miss occurred and the victim accessed the memory mapping.

Branch Prediction Analysis [18, 19] enabled Aciigmez et al. to extract sensitive information
from parallel running processes by running a carefully written spy process. These attacks
allow an unprivileged process to extract (partial) keys of an RSA implementation although
other hardware security features are in place like memory protection, sandboxing or
virtualization. They show that nearly all bits of a key can be extracted of a single RSA
signing execution. This is different from classical timing attacks, which require many
measurements to amplify small time differences depending on the key used.

Another class of attacks exist with an attack known as Rowhammer [20, 21]. It aims
to influence neighboring memory cells that are not accessible under normal conditions.
Gruss et al. [22] showed that this type of attack also works in scripting environments,
particularly in websites with JavaScript. The reason for this problem is the high density
of the current DRAM technology. The smaller the building blocks of the memory becomes
the harder it is to make sure there is no electrical interaction between them. Rowhammer
attacks share goals of this thesis, mainly the ability to influence other processes that
should not be possible when they are isolated from another.

RAMBleed [23] extended the abilities of Rowhammer by creating a read side-channel.
This shows that these kind of memory attacks is not only a threat to the integrity of
the victim’s system but also to the confidentiality. RAMBIleed also works on system
with error correcting memory, thus exposing a security threat even with server hardware,
and without the need of huge pages. With their novel attack Kwong et al. managed to
extract a RSA-2048 key from a SSH daemon running as the root user.

Lipp et al. [7] developed Meltdown, which uses side effects of the out-of-order execution
present in modern CPUs. The attack allows adversaries to read arbitrary kernel space
memory. Therefore, Meltdown impairs the security provided by address space isolation
and paravirtualized environments. CPUs with out-of-order execution allow unprivileged
processes to execute loads of privileged memory regions. Furthermore, some computations,
like array accesses, can be performed based on the value of these temporary registers. If
the instruction should not have been executed, the result from the memory lookup is
discarded, which basically prevents security issues. However, a side-channel exists based
on the behavior of the CPU cache. This enables an attacker to dump the full kernel
memory with 3.2KB/s to 503KB/s depending on the hardware used.

Spectre [8] attacks are based on the same idea as Meltdown, where the speculative
execution of the CPU performs possibly incorrect operations and reverts to a prior state
in case the speculative path is not taken. The attacks use the branch prediction of a wide
range of modern processes. Adversaries are capable to read memory and register content
from other processes. Spectre consists in multiple variants, which differ in the way the
speculative execution is achieved and the method for leaking the information. Kocher et
al. propose that a long-term solution for these attacks needs fundamental changes of the


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

processor’s instruction set architecture.

Van Bulck et al. [24] managed to extract keys from secure enclaves inside a CPU. Fore-
shadow is a Meltdown variant that targets Intel’s SGX' technology. Intel’s investigations
on Foreshadow revealed the root cause and much broader issues, collectively named
Foreshadow-NG [9]. Foreshadow-NG can be used by unprivileged applications to access
kernel memory or by malicious virtual machines to read hypervisor data. The attacks
allow adversaries to dump L1 data cache and to gather information from currently
non-mapped physical memory. Therefore, previous mitigations for the initial Meltdown
attack are necessary but not sufficient.

ZombieLoad [10] is another Meltdown-type attack and makes use of the fill-buffer logic.
Data from unauthorized destinations can be stored in the fill buffer by faulting load
instructions. Schwarz et al. discovered that this data leakage can occur across logical
cores. They show the effectiveness of Zombiel.oad by "attack scenarios across CPU
privilege rings, OS processes, virtual machines, and SGX enclaves" [10]. Furthermore,
they argue that the only workaround to fix ZombieLoad is to disable hyperthreading.

2.2 Taint Analysis

To find side-channels between containers a whole system taint analysis must be performed.
This means that the taint engine includes analysis about the operating system kernel.
There are some projects that offer a good starting point at first glance, but were in fact
too limited. The tool Bochspwn Reloaded [25], for example, is based on the emulator
Bochs'' and it uses Bochs interfacing mechanisms for tainting. Moreover, the hypervisor
system Xenpwn [26] is inspired by Bochspwn Reloaded and works by manipulating the
Extended Page Tables [27] to handle exceptions when memory pages of interest are
accessed. Both, Bochspwn Reloaded and Xenpwn, were created to find Double Fetches, a
special form of Time-of-Check-to-Time-of-Use vulnerability [26].

Even though Bochspwn Reloaded describes itself as taint tracking (and Xenpwn has the
same objective), we discovered that their approach is too limited for this thesis. They
basically look for large memory operations and do not focus on taint analysis on a register
level. Both systems work for whole system analysis but they implemented a simplified
mechanism and for this thesis a more generalized one, which includes registers, is needed.

Taint analysis or other data-flow analysis that offer whole system analysis is also used in
malware analysis. K-Tracer is "an automated rootkit behavior analyzer for the Windows
08" [28]. Tt is based on the emulator QEMU'? and creates dynamic traces of execution
paths for all kernel functionalities. The system recognizes events, which manipulate data

Onttps://www.intel.de/content /www/de/de/architecture-and-technology/
software—guard-extensions.html

Uy ttp://bochs.sourceforge.net

2https://www.gemu.org


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Taint Analysis

and access to sensitive information. It was tested against several rootkits, which showed
that the system can gather information about malicious capabilities.

TaintQemu is also based on QEMU and analysis malware behavior with "whole-system
fine-grained taint analysis" [29]. Virtual device inputs are tainted and their propagation
is recorded as taint graphs. The PolicyDB stores policies, which a taint graph should
satisfy. Violations are considered malicious behavior. Yin et al. also used QEMU to
emulate the guest system. They use it instead of Bochs because Bochs’ emulation is slower
compared to QEMU. There is also Panorama, a whole system emulator, which performs
"fine-grained taint tracking" [30]. Panorama involved the same researchers as TaintQemu
and both projects share many properties. Panorama’s approach marks sensitive data and
tracks their propagation across the whole system. The taint propagation is performed at
the hardware level and it is aware of operating system objects, for example, the current
process. The result of the taint propagation and the knowledge about the current state
of the operating system are taint graphs. Taint graphs include information about which
processes accessed the tainted data, the flow of the data through the system and the
destination of the data, for example, if it is written to a file or sent over the network.
Furthermore, Yin et al. defined policies based on taint graphs, which specify certain
types of behavior. The policies can be compared to taint graphs of unknown software to
automatically detect behavior of certain categories. In the evaluation step, the system
did not cause false negatives and it only reported a few false positives.

Chow et al. [31] used tainting at the hardware level to determine the lifetime of sensitive
data, like passwords. They argue that by minimizing the duration a sensitive object is
stored, the chance of data exposure is decreased. TaintBochs tracks the tainted data
by running the complete software stack in a simulated environment. They implemented
taint flags at processor states, device states and system memory. They showed that at
the time many software projects did not take care of reducing the lifetime of sensitive
data. Often buffers are deallocated without clearing them from sensitive information.

To our current knowledge the projects K-Tracer, TaintQemu, Panorama and TaintBochs
are not open source, which could make the access to the source code and further
development difficult. In case we could use any of those projects, we expect that it would
not be possible to make the source code developed along this thesis publicly available.
Therefore, we prefer an open source solution with an active community maintaining the
source code.

PIRATE [32] is a system that implements information flow tracking based on the LLVM
intermediate representation. It allows architecture independent analysis by translating
all guest instructions to an intermediate representation. The result is that Whelan et
al. only needed to write data tracking code for 29 instructions. PIRATE was then
further developed into a full reverse engineering toolkit named PANDA [33]. It provides
a rich plugin system and includes many useful plugins, like dynamic taint analysis and
Operating System Introspection. Plugins can receive callbacks as well as provide callbacks
to other plugins. We chose PANDA as a starting point for our implementation because


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

STATE OF THE ART

10

it is open source and comes with many features we need. More on the architecture of
PANDA can be found in Section 3.3.

2.3 System Calls Fuzzers

Fuzzing or Fuzz Testing is a technique for software testing that tries to find software
bugs by inputting (semi-)random data. It is therefore a blackbox-based technique. [34]
Programmers have created fuzzers that aim to test syscalls since at least 1991. An early
syscall fuzzer was tsys'3, which basically calls random syscalls with constant nonsense
data. These first fuzzers found some obvious bugs. However, after a basic input validation
was added, it becomes very hard for these early fuzzers to guess the input data just right
so that the kernel does not reject the system call immediately. [35]

Trinity'* is a Linux system call fuzzer that uses semi-intelligent arguments, so that most
of the time the input validation will succeed and the actual implementation of a syscall
will be tested. The fuzzer has knowledge about the datatype a certain syscall requires.
For example, if a syscall needs a file descriptor, Trinity can provide a valid one. Likewise,
for flags and ranges of values, if syscalls only accept these then trinity will provide such
a valid value. In these cases, Trinity will sometimes throw in an invalid value at random
such that more obscure bugs can be found. [35]

Furthermore, Trinity can apply sanitizing functions after the random data has been
created, which ensure that the arguments are valid [36]. For example, Listing 2.1 shows
the definition for fuzzing of syscall rt_sigaction. This section of code was taken from
the Trinity source file syscalls/sigaction.c. The listing demonstrates that the sanitise
function sometimes sets the argument 2 and 3 to NULL (pointer with value 0) and the
argument 4 is always set to the size of the signal set, which is of the type sigset_t. In
the struct syscall_rt_sigaction, the name is set to the syscall name, the number
of arguments is defined, the sanitise function and the types of the arguments, with extra
information like the upper and lower bound for ranges, is stored.

static void sanitise_rt_sigaction (struct syscallrecord xrec)

{
if (RAND_BOOL())
rec—>a2 = 0;

if (RAND_BOOL())
rec—>ad = 0;

rec—>a4 = sizeof(sigset_t);

Bhnttps://groups.google.com/forum/?hl=en#!msg/alt.sources/V_B37EtnWKQ/
NztsljvyveaJ
Mpttp://codemonkey.org.uk/projects/trinity/


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.3. System Calls Fuzzers

struct syscallentry syscall_rt_sigaction = {
.name = "rt_sigaction",
.num_ args = 4,
.sanitise = sanitise_rt_sigaction ,
.arglname = "sig",
.argltype = ARG RANGE,
.lowlrange = 0,
.hilrange = _NSIG,
.arg2name = "act",
.arg2type = ARG _ADDRESS,
.argdname = "oact",
.arg3type = ARG _ADDRESS,
.argdname = "sigsetsize',

Listing 2.1: Trinity fuzzer code for the syscall rt_ sigaction

Trinity was chosen as a source of syscalls because it offers a higher success rate than
the early syscall fuzzers due to the knowledge about system call argument types. There
are more advanced fuzzers, like syzkaller'® and kAFL [37], which have some notion of
coverage. However, to keep the setup simple for this thesis, Trinity was chosen. For
example, syzkaller requires that the kernel is compiled with special flags that enable
the coverage analysis. This could potentially cause an increase of false positives for the
purposes of this thesis. Please note, that the developed solution is independent of the
used syscall fuzzer, so it is not hard to do the setup with a different fuzzer.

Bhttps://github.com/google/syzkaller

11


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Background

The implementation of an automated process for identification of cross-container side-
channels requires the knowledge about some key technologies and conventions. In
this chapter, we summarize the necessary details to give background information for
understanding of the implementation in Chapter 5.

3.1 Container Virtualization

Container-based deployments provide a lightweight and standalone virtualization, which
pack everything an application needs (e.g. libraries, code, tools and settings) into one
package. They are portable, which means you can change the host environment without
affecting the containerized application. [38, 39] Due to their small size it possible to run
and store hundreds of containers on one physical host [39].

3.1.1 General Overview

With the raise in popularity of cloud computing systems, hypervisor-based virtualization
became an often seen tool [39]. This form of virtualization allows you to run different
operating systems on one physical host. In Figure 3.1 you can see an overview of the
different virtualization approaches.

As you can see a hypervisor-based deployment enables users to run multiple operating
systems on one host. This can be a requirement of a cloud customer, who is only familiar
with certain operating systems, or a hosted application, which requires a certain operating
system. Hypervisors come in two forms, type 1 hypervisors, where the hypervisor software
runs directly on the physical hardware, and type 2, where a host operating system runs
the hypervisor. [40] Figure 3.1a shows a type 2 hypervisor.

Container-based virtualization provides an isolated environment for processes. Con-
tainerized application share the same operating system kernel with other containers

13



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

3. BACKGROUND

APP APP APP

A B C

Libs Libs Libs

APP APP APP
0s s A B c
A B
Libs Libs Libs
(a) Hypervisor-based deployment. (b) Container-based deployment.
Figure 3.1: Differences between a hypervisor-based deployment and a container-based
deployment. Figures taken from [39].
and the host system. Figure 3.1b shows that a container engine is used to administrate
the containers. Containers have the benefit of being much smaller in size because they
can share libraries. Depending on the application, they can also be started in a few
milliseconds [39, 40].
From a developer’s point of view, one container image is built for one application, which
can be deployed on a system. There is no need to manage the host machine by hand
or to worry about dependency conflicts of used software libraries. Containers can also
improve the reproducibility of software builds (or even research results [41]) and the
synchronization of dependency versions across different host machines. [40]
It is also possible to use both approaches in one system. In such a hybrid setup, users
would run the host for the containers on top of a hypervisor and the containers in it.
This would improve the isolation between the applications and have the benefit of easier
management [40]. Kata containers' combine virtual machines and containers in a single
runtime. They use lightweight virtual machines to provide a stronger isolation due to
hardware virtualization.
nttps://katacontainers.io
14



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.1. Container Virtualization

3.1.2 Architecture of Docker

For this thesis Docker was chosen as the container engine implementation. This is because
Docker is currently very popular [42, 43]. However, many statements are true for some
or all other container engines. The developed plugin of this thesis is independent of the
software under test. Docker is not a monolithic peace of software. It builds upon other
open source projects, where some are used by other container engines.

DOCKER CLI DOCKER API

INTEGRATED LIFECYCLE
MANAGEMENT

CONTENT TRUST AND AUTHENTICATION
COMPOSE VERFICATION

SECURITY NETWORK VOLUMES
CONTAIMER ENGINE

DISTRIBUTED STATE SECRETS ORCHESTRATION

CONTAINERD £ CONTAIMER RUNTIME
ocl
LINUX WINDOWS os
HARDWARE INFRASTRUCTURE

Figure 3.2: Overview of the Docker architecture. Figure taken from [44].

Figure 3.2 shows the architecture of containerized applications using Docker as a container
engine. Docker provides a CLI and an API for managing containers. Docker containers
require an image to start and these images are built upon other (base-)images. The images
are created in a script format called Dockerfile, which consists of a series of commands
to build an image. [39] The images can also be made publicly available using registries,
like Docker Hub?, which eases the deployment of a service due to documentation and
comments from other users [40].

containerd® is the container runtime used by Docker [38]. It acts as an abstraction layer
between the kernel level and higher level engines. It abstracts the use of syscalls like
clone and mount with containers or snapshots. [44] containerd runs as a daemon and
controls a complete container lifecycle. It also fully implements the Open Container
Initiative (OCI) runtime specification.* The OCI runtime specification "aims to specify

the configuration, execution environment, and lifecycle of a container.”".

2https://hub.docker.com

3https://containerd.io

“https://github.com/containerd/containerd

5https ://github.com/opencontainers/runtime-spec/blob/master/spec.md

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

BACKGROUND

—_
(=]

Internally containerd uses runC to create the actual containers on Linux. runC is tightly
coupled to the Open Container Initiative runtime specification and developed by the OCI
itself.

3.1.3 Other Container Engines and Similar Software

As already mentioned in Section 3.1.2, we focus on Docker for this thesis. However, other
runtime implementations and other software exist, which allow the containerization of
processes. During our research, we discovered that many of these software products share
the same security properties with Docker.

rktS is a container engine, which is an alternative to all levels of the Docker archi-
tecture, namely Docker (CLI, API), containerd and runC [45]. The Seccomp Isola-
tors Guide of rkt states that the default seccomp profile, when no profile is speci-
fied, is @rkt/default-whitelist and that rkt ships with the ability to use the
default Docker profile [46]. Moreover, if we look in the implementation of the de-
fault rkt seccomp profile, the variable RktDefaultSeccompWhitelist is set to
DockerDefaultSeccompWhitelist, thus the default rkt profile is the same as the
default Docker profile”. The same is true for the default capabilities, where both share
the same list of 14 capabilities®.

Another project is Apache Mesos”, which is a distributed systems kernel. It abstracts
compute resources, which enables computer clusters to be elastic and fault-tolerant. Its
default seccomp profile is very similar to Docker’s'?. The Mesos documentation about
the seccomp isolator [48] states that the profile must be in the Docker format. Again,
compared to the default Docker profile from September 2018, it is equal to the one of
Docker, except it adds support for the syscall pivot_root.

This means that our choice of using Docker does not only cover the security of Docker
containers. All software that uses the same profile or is based on such a container engine
has (at least partially) the same isolation level as Docker.

For Linux systems software exists that allows developers to package applications. In
case of the following examples, the software allows users to run the applications in a
sandbox, which is implemented similar to containers. Therefore, they are also of interest
for this thesis because they also aim to provide a secure application isolation. As an
example, there is Flatpak!'!, which makes use of a default seccomp profile for sandboxing.

Shttps://coreos.com/rkt/

"https://github.com/rkt/rkt/blob/master/stagel/init/common/seccomp_
wildcards.go#L412

8Compare [47] with https://github.com/moby/moby/blob/master/oci/defaults.go#
L14-130.

%http://mesos.apache.org

0 Compare http://mesos.apache.org/documentation/latest/examples/
seccomp_default. json with https://github.com/moby/moby/blob/
ccd22ffcc8b564dfc21e7067b5248819d68c56c6/profiles/seccomp/default. json.

Uyttps://flatpak.org


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. Technologies of Linux Containers

In the source code of Flatpak we found that it uses a blacklist approach, which is "copied
from linuz-user-chroot"'?. Flatpak also uses Linux namespaces to provide a unique
environment for each application. A complete list of the current default setup can be
found under [49]. There is also AppImage', which uses Firejail'* as an optional sandbox.
Firejail uses a system of profiles that define the sandbox for a certain application. Over
400 profiles already exist for common software'®. In the profile a list or pre-defined
classes (or both) of syscalls can be found, which are filtered using seccomp. Furthermore,
a list of Linux capabilities for the execution of the application can be defined.

3.2 Technologies of Linux Containers

Linux containers rely on several technologies built into the Linux kernel. These technolo-
gies provide isolation and security such that a process within a container cannot interfere
with the host’s and other containers’ resources unless explicitly permitted.

3.2.1 Kernel Namespaces

One of the core concepts of containerized processes is Kernel Namespaces. They provide
an abstraction to global resources such that processes within a namespace have their
own instances of global resources. Changes to the resources only appear to the processes
within the namespace and not to the other processes. [50] Linux Version 5.0 supports the
following types of namespaces:

e Cgroup: A cgroup namespace isolates the view of the cgroups by having different
cgroup root directories. The root directories act as base points for the relative
paths found in /proc/[pid]/cgroup. When a new cgroup namespace is created,
the root directories are set to the caller’s root directories. The paths found in
/proc/[pid]/cgroup are relative to the process’s root directory, which can lead to
paths starting with ../ if the read process’s cgroup directory is outside the reading
process’s root directory. [51] We discuss more details of cgroups in Section 3.2.2.

e [PC: These namespaces isolate System V IPC objects and POSIX message queues.

The objects within a namespace are not visible to processes outside the namespace
and they are automatically destroyed when the last processes within the namespace
exits. [50]

e Network: Each namespace has its own network devices, IP protocol stacks, IP
routing tables, firewall rules, subdirectories in the proc and sys directories, sockets

and UNIX domain sockets. Physical network interfaces can only be in one namespace.

Phttps://github.com/flatpak/flatpak/blob/0bb64e9a8833e3158328c99391de2b9930
cf6964/common/flatpak-run.c#L2427-1L2428

Bhttps://appimage.org

Yyttps://firejail.wordpress.com

Bhttps://firejail .wordpress.com/documentation-2/basic-usage/

17


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

BACKGROUND

18

When a namespace gets destroyed, physical interfaces are assigned to the initial
namespace and virtual interfaces will be destroyed. [52]

e Mount: Namespaces of this type isolate the list of mount points. When a new mount
namespace is created, the mount point list is copied from the caller. Changes to the
mounting points, by default, do not affect the mount points of other namespaces. [53]

e PID: Processes in different PID namespaces can have the same Process ID Number.
This enables migrations of containers from one host to another without affecting the
PID. The first PID in a new namespace is always 1, mimicking a new standalone
system. This process acts as the init process and will be the parent for orphaned
processes within the namespace. If this init process terminates, all processes within
the namespace will receive the signal SIGKILL. PID namespaces are structured
in a hierarchy, where each namespace has a parent namespace, except the initial
namespace. Processes in the same PID namespace can see each other and they are
also visible by their ancestor PID namespaces. Therefore, a process has a PID for
each level in the hierarchy. A process can change its PID namespace to one of its
child’s but not to the PID namespace of its parent. [54]

e User: A user namespace isolates user IDs, group IDs, the root directory, keys
and capabilities. The user ID and group ID of a process can be different whether
it is viewed from within the namespace or not. Therefore, a (from the outside)
unprivileged process can have a user ID of 0 when examined from inside. Inside
the namespace the process has full privileges, however, it is unprivileged outside.
Like PID namespaces, user namespaces can be nested. It is possible to gain
capabilities by changing the namespace (if the process has the CAP_SYS ADMIN
capability). [55]

e UTS: Unix Time Sharing namespaces isolate the hostname and the Network Infor-
mation System domain name [50].

The lifetime of a namespace ends when the last process terminates or leaves the namespace.
However, there are exceptions to this rule, where namespaces exist without processes.
For example, in case of nested namespaces, a child namespace can still have processes. A
more extensive list of exceptions can be found at [50].

Namespaces can be controlled by several syscalls. For these, the calling process must
have the CAP_SYS ADMIN capability'6. The system call clone!'” creates a new process
(or thread). It has the parameter flags that influences the behavior of the syscall. The
constants starting with CLONE__NEW create new namespaces for the newly created
process. [56]

Y Except for the creation of a user namespace [50].
"For more details on the clone syscall see [56].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. Technologies of Linux Containers

The syscall setns'® can change the namespace of the calling process. The first parameter
is a file descriptor referring to a /proc/[pid]//ns/ directory and the second parameter can
specify the type of namespace (0 means any type). Some security restrictions apply to
this system call, for example, it is not possible to reenter the namespace to gain dropped
capabilities. [57]

With unshare!® users can disassociate parts of the process from other processes when
they have a shared execution context. For example, when forking a process, the new
child process has the same mounting namespace. With unshare it is possible to unshare
the mounting namespace by creating a copy of the mounting point list. Unshare also
supports other CLONE_NEW?* constants from clone. [58]

Finally, the ioctl?? system call reveals information about the relation of namespaces. The

first parameter fd should refer to a file in /proc/[pid//ns/ and the second is a constant,
which name starts with NS . Operations, like get the type of a namespace, get the
user ID of process who created the user namespace and get the parent namespace (for
hierarchical namespaces) are available. [59]

In the Linux kernel, there are two objects that are not namespaced, therefore they are
shared between all containers (if accessible). The first one is time, which means that
processes in different namespaces could have different clocks. There is no time namespace
because there is probably no production use case. To change the time within a container,
the container must be started the additional capability CAP_SYS TIME. The second
object is the kernel keyring. Currently, a user has access to its keys no matter in which
namespace the process is running. There is already a patch to make keys user namespaced,
however, it is only suitable for the orchestrated container system use case and not for
other use cases?!. In Docker (and in other container engines), the system calls to the
kernel keyring is denied by the default seccomp filter, making it inaccessible from within
a container. [60]

3.2.2 Control Groups

Control Groups, also known as cgroups, are a feature of the Linux kernel that allows
to pose restrictions and to monitor some types of process resources. A subsystem or
controller is a component that alters the behavior of a resource, for example, that the
memory available to a cgroup is limited. The Control Groups are organized in a hierarchy
in a pseudo-filesystem called cgroupfs. Subdirectories in this filesystem represent cgroups
subgroups. The attributes, like limits and accounting information can be placed on any
level of the hierarchy. Limits on a lower level cannot exceeded the limits on an upper
level. [61]

18For more details on the setns syscall see [57).

9For more details on the unshare syscall see [58].

20For more details on the joctl syscall in context of namespaces see [59].
2'https://patchwork.kernel.org/patch/9394983/

19


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

BACKGROUND

[\~
@)

Currently, there exist two versions of Control Groups, version 1 and version 2. Both
can be used simultaneously, however, a controller can only be mounted in one version’s
hierarchy. Version 2 is intended to replace version 1 eventually.

Details on which controllers exist and how to add or move processes to certain cgroups
of version 1 and 2 can be found in [61].

Control Groups Version 1

In version 1 Control Groups it is possible to mount each controller to separate locations,
thus, creating their own hierarchy. It is possible to mount the same set of controllers
to multiple mounting points. In this case, they share the same view over the hierarchy.
But it is not possible to mount different sets, which contain common controllers, to
multiple locations. In many systems, especially when systemd?? is used, the cgroupfs is
automatically mounted under /sys/fs/cgroup.

Version 1 also distinguishes between processes and threads, where it is possible to
independently set the cgroup memberships of each thread of a process. This can cause
problems or simply does not make sense in some cases, like memory limits because threads
share the same memory space. In version 2 the distinction between processes and threads
was removed.

Mounted cgroupfs filesystems can only be unmounted if they are not busy, which in this
context means they have no child cgroups. To remove all child cgroups, all processes in
the child cgroups must be moved to another cgroup before.

Control Groups Version 2

Control Groups of version 2 simplified the cgroup system by only having one hierarchy for
all controllers. Different containers can be mounted in version 1 and version 2 hierarchies,
but it is not possible that the same controller is mounted simultaneously in hierarchies of
both versions.

As already mentioned in Section 3.2.2, tasks are no longer subject to cgroups. Another
key difference to version 1 is the no internal processes rule. It requires that processes are
only present in the hierarchy leaf nodes. The root cgroup is an exception of this rule. It
is still possible to add processes at any level in the hierarchy by adding a leaf node at the
desirable level and to put the processes in there. The rule makes relations between child
cgroups explicit and eases the decision on how to partition resources between a cgroup
and its child groups.

There are further minor differences between Control Groups of version 1 and 2, which
can be found in [61].

Znttps://wiki.freedesktop.org/www/Software/systemd/


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2. Technologies of Linux Containers

3.2.3 Linux Kernel Capabilities

In the traditional UNIX world, a process is privileged if the effective user ID is 0, or
unprivileged if the effective user ID is nonzero. When performing permission checks,
the kernel skips all checks for privileged processes. However, to create a finer grained
distinction, capabilities were introduced. [12]

In case of Docker, there exists a default whitelist of capabilities a containerized process
has. In Docker, it is possible to start a process with more than default capabilities or
less. [62] Here is the default list? in the current version of Docker?*:

e CAP CHOWN

e CAP DAC_OVERRIDE
e CAP_FSETID

e CAP_FOWNER

e CAP_MKNOD

e CAP_NET_ RAW

e CAP SETGID

e CAP_ SETUID

e CAP_SETFCAP

e CAP_SETPCAP

e CAP_NET_BIND_SERVICE
e CAP_ SYS CHROOT

e CAP_KILL

e CAP_AUDIT WRITE

Capabilities can be set on threads and on executable files. On threads they affect the
thread itself and the threads created by the thread. Capabilities on files define the
capabilities a started program (ezecve) has. This can be thought as an extension of
the SUID bit. Each thread has sets of capabilities, which define the behavior of this
mechanism. The following sets exist: [12]

ZTheir exact meaning (and the meaning of all other capabilities) is described in [12].
2https://github.com/moby/moby/blob/master/oci/defaults.go#L14-130

21


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

BACKGROUND

22

e Permitted: It is a limiting superset for the capabilities in the effective set. If the
current thread does not have the CAP_SETPCAP capability, it is also a limiting
superset for the inheritable set. Once a capability is dropped from this set it cannot
be acquired again, unless ezxecve is called with a file that has the SUID bit or file
capabilities set.

e Inheritable: This set is preserved when calling execve. However, this is generally not
the case for programs running as a non-root user. The inheritable set is combined
with the inheritable set of the file to form the permitted capabilities after the
ezecve.

e Effective: The kernel uses this set to perform the permission checks.
e Bounding: This set can be used to limit the permission gained by calling execve.

e Ambient: The ambient set is preserved when execve is called in an unprivileged
program. In this case, the ambient capabilities are added to the permitted set. The
ambient set has the property that all capabilities in this set must be both in the
permitted and inheritable set. This also means that a capability is removed from
the ambient set if it is removed from the permitted and inheritable set. If a program
changes the UID or GID due to a SUID or SGID bit or if any file capabilities are
set, then the ambient capabilities will be cleared.

File capabilities are stored in the extended attribute security.capability. To be able to
write to this attribute requires the capability CAP_SETFCAP. The file capabilities
are used for determine the thread capability sets after execve is called. The following
capability sets for files exist: [12]:

e Permitted: Unless in the bounding set, these capabilities are added in the permitted
set of the thread.

e Inheritable: The intersection of this set with the inheritable set of the thread is
added to the permitted set of the thread.

e Effective: This is only a single bit that determines if newly added permitted
capabilities are also automatically added to the effective set.

To calculate the capabilities, ezecve performs the algorithm [12] as shown in Algorithm 3.1,
where P(-) denotes the thread set before execve is called, P’(-) after ezecve is called and
F(-) a file capability set.

For programs, which real or effective UID is zero, the file inheritable and permitted sets
have all capabilities enabled. However, there is one exception to this rule, when a SUID
to root program has file permissions set and is executed by a non-root user, then the
file capabilities are taken (and not overridden to be all enabled). Thus, it is possible to
create a SUID to root program with empty file capabilities sets that changes the effective


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2. Technologies of Linux Containers

Algorithm 3.1: Capability Algorithm for Threads

1 P’(ambient) < (file is privileged) 7 0 : P(ambient)

2 P’(permitted) < (P(inheritable) & F(inheritable)) | (F(permitted) & P(bounding))
| P’(ambient)

3 P’(effective) « F(effective) ? P’(permitted) : P’(ambient)

4 P’(inheritable) < P(inheritable)

5 P’(bounding) <+ P(bounding)

user to root but does not enable more capabilities. For some of these rules there are
several special cases and things to consider. For a detailed description, please have a look
at [12].

The capabilities of a thread can be altered by the syscalls capset [63] and pretl [64],
however, on systems with file permissions it is not possible to alter other processes because
the intended way is to change the capabilities is with file permissions [63]. prctl only
allows to drop capabilities from the bounding set and to alter the ambient set, whereas
with capset all capabilities can be altered.

3.2.4 Secure Computing Mode

The secure computing state of a process comes in two variations. There is the strict
mode that permits a program to only execute the system calls read, write, _ exit and
sigreturn [65]. This means that all necessary file descriptors and signal handlers must be
set up before a process enters this mode.

The other variation is the filter mode, which allows a BPF filter to be installed for
checking the syscalls. Child processes inherit the filter if creating child processes is
permitted. The filter is preserved when ezecve is called. To use the filter mode the
process must have the CAP_SYS ADMIN capability or the no_new_ privs bit must be
set. If the bit is not set it must be set before adding the filter. [65] The no_new_ privs
bit prevents processes from ever gaining more privileges than they currently have, even
if, for example, a program with the SUID bit is started [64]. Therefore, filters could be
added, if still permitted, but never removed.

In case of Docker, a default seccomp profile®® is applied to every new containerized process.

The profile defines a default policy and a whitelist of syscalls. Each list of syscalls can be
further narrowed down to specific arguments, architecture or set capabilities. The profile
is then converted?® using libseccomp®” to a BPF filter.

The Berkeley Packet Filter (BPF) is a language for implementing packet filtering. It is
now present in the Linux kernel and it is not limited to network filters. It can be used

Phttps://github.com/moby/moby/blob/master/profiles/seccomp/default. json

nttps://github.com/opencontainers/runc/blob/2c632d1a2de0192c3f18a2542cch
6£30a8719b1f/libcontainer/seccomp/seccomp_linux.go

Thttps://github.com/seccomp/libseccomp

23


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

BACKGROUND

24

as an universal in-kernel virtual machine. BPF is utilized by, for example, seccomp and
bpftrace®. [66]

3.2.5 Linux Security Modules

LSM is a framework that allows to build Mandatory Access Control (MAC) extensions
into the kernel. The extensions are built into the kernel at compile-time and the default
one can be selected at boot-time with a kernel command line argument. Some examples
of these extensions include SELinuz®®, Smack®®, Tomoyo3', and AppArmor32. The
default LSM is the Linux capabilities system and it can be used as a basis for building
an extension upon. [67]

In Docker, it is possible to define an AppArmor policy, which is then applied for the
starting container (if AppArmor is enabled). Otherwise, a default profile is applied. The
profile must be loaded on the host before it can be used for containers. [68]

3.2.6 Other Security Aspects

There exist several other security mechanisms that can be enabled for a containerized
process. Any kernel security improvement is also applicable for containers. For example,
PaX33 is a security patch for the kernel source code. If a host system runs with a PaX
patched kernel, the security of the containers is also improved because they share the
same kernel. [62]

3.3 Taint Analysis with PANDA

PANDA stands for Platform for Architecture-Neutral Dynamic Analysis and is an analysis
engine based on QEMU [69, 33]. It can perform whole-system dynamic analysis and
includes the ability to record and replay a certain execution. It features a plugin
mechanism that simplifies the development of additional analysis modules.

PANDA has been chosen as a starting point of this thesis because it supports whole-
system analysis. This means it can perform analysis for not only user programs but also
kernel code. It includes plugins, which ease the development of a software like the one
developed in this thesis. The plugins used are described in Section 3.3.2. The replay
feature eases the development of plugins because the whole operating system is already
started for each run and every execution of a recording is exactly the same. The PANDA
projects provides rich documentation and includes examples, which greatly help to start
with a project.

https://github.com/iovisor/bpftrace
Pnttps://selinuxproject.org
3%http://schaufler-ca.com
3http://tomoyo.osdn. jp
32https://gitlab.com/apparmor/apparmor
33https://pax.grsecurity.net


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Taint Analysis with PANDA

3.3.1 PANDA Analysis Architecture

PANDA is based on QEMU, which supports multiple architectures by translating the
native instructions to an intermediate language called Tiny Code Generator. However,
more complex instructions are implemented in the C programming language [70]. These
are called helper functions. For a more sophisticated analysis, a common intermediate
language is needed. In [33] Dolan-Gavitt et al. used clang®* to create LLVM?® intermedi-
ate code from the helper functions. Furthermore, they used a module from the S2E36
system to translate TCG code to the same intermediate language. PANDA then uses the
LLVM intermediate language as a basis for the taint analysis.

TCG IR Host Code

st_i64 tmpl2,env,$0xdaed @
1d_i64 tmpl12,env, $0xdado Basic Block

v

| and $0x1fe0d,%esi
_—] ’ .
2 lea 0x528(%r14) ,%rsi
GuestCode | (2 T imp  @x41cbf0ce
oush ebp @) (6) callg 1d_mmu
(1) mov ebp, esgl * (4),(5)
mov eax, [edi .
» ledil LLVM IR Basic Block
mov %ebp, (%rdi)
%3 = inttoptr 164 %2 to i64x > mov %sebp,%esi
store i64 218737284, i64x %3 xor %sedx, %edx

Ll

Figure 3.3: Overview of the PANDA instruction translation. Figure taken from [33].

The Figure 3.3 shows an overview of the described process including points where
instrumentation can be performed. Plugins can register callbacks and these will be called

when certain events happen. (1) refers to events when a guest instruction is executed.
Callbacks are also called before and after the translation, which are shown in (2) and (3).

(4) and (5) mark the events before and after a basic block is executed. Plugins can also
register callbacks for memory accesses (6). [33] There are many more callbacks available,
a current list can be found in the PANDA manual [69].

Plugins can further access functionality like reading and writing of memory, command
line argument parsing and access to a precise program counter. The plugins themselves
can provide callbacks. It is therefore possible to build more complex analysis programs
on top of a set of already available plugins. This has already been done for some included
plugins because it advocates the separation of concerns.

3https://clang.llvm.org
3https://1lvm.org
3https://s2e.systems

25


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

BACKGROUND

26

3.3.2 PANDA Plugins

To develop the plugin for this thesis, included plugins from PANDA were used. Please
note, that PANDA is currently in version 2 and the following plugins have been updated
from version 1, hence the digit 2 at the end of the name of some plugins.

The osi and osi_ linux Plugin

The ost plugin provides operating system introspection. This means that it can be used
to get information stored in the current running system, like the current process’s PID,
PPID and name. It is able to fetch information about the current thread, kernel module
and user libraries. The osi plugin itself is only a glue layer with common functionality
between the plugin that uses it and the operating system specific implementation. The
aim was to create a common interface, such that a plugin can be created that works
with multiple operating systems. In case of Linux, the implementation is found in the
osi_linux plugin. [71]

The osi_ linux plugin provides the Linux specific implementation for the osi plugin. It
needs a configuration file with a list of Linux kernel data structure offsets. With these
offsets, it can traverse the data structures in the guest memory and find the requested
information. The offsets change with different Linux kernel versions and compile flags,
so to help with this a kernel module is provided. This kernel module must be compiled
on the guest and then loaded to create the necessary configuration file. [72] Please note
that this plugin had to be patched with changes from a fork so that it works with more
current versions of the Linux kernels. We discuss the details of the version used for this
thesis in Section 5.2.

The syscalls2 Plugin

The syscalls2 plugin features callbacks for system calls on supported operating systems.
Callbacks are available for the beginning (enter) and for the end (return) of a syscall.
Callbacks can be registered for specific syscalls, for all syscalls and for unknown syscalls.
The information a plugin gets when using the syscall2 plugin includes a CPUState, which
is a representation of the current CPU state, the current program counter and the number
of the syscall. Furthermore, newer callbacks exist that add additional information, like
the syscall parameter’s data types (for example, strings or pointers to structures) and
size in bytes. [73]

The taint2 Plugin

With the taint2 plugin it is possible to track the flow of data. Labels can be applied
to memory addresses. It is then possible to follow the flow and to query addresses to
get the applied labels. The word address refers to all types of memory that a label
can be applied to. Labels can be applied to memory like, physical RAM, hard drives,
IO buffers, port addresses, local values (similar to CPU registers but in the LLVM


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Taint Analysis with PANDA

intermediate representation), general purpose register and special addresses like floating
point registers. [74]

taint2 supports label sets, which means one address can have multiple labels assigned.
Labels can be applied additively, or not, which means that the current labels will be
removed before the new one will be added. Depending on the operation and input
parameter label sets, an output label set is created. For example, if some address a has
the label set {1} and a different address b has the label set {2}, then the resulting label
set when performing an addition (¢ = a + b) is {1,2}. [74]

For every tainted address a computing number is stored. This number indicates how
many operations were performed on the data. Furthermore, the control mask bits mark
the bits of a byte that are (directly) under control of the initially tainted data, which we
can think of as input from a potential attacker. Furthermore, the zero and one bit mask
indicate bits of a byte that are always set to 0, respectively 1. Please note that these
bytes are stored per address and not per label, which means they generally indicate the
"best case" for a potential attacker.

The plugin can be configured with several options. By default, dereferenced pointers are
also tainted. This means that indirect accessed memory is also tainted with labels of
the source bytes and the pointers labels [74]. First all the labels of the pointer bytes
are mixed and then the labels of each source byte are added to the destination byte. In
the PANDA source code the following example can be found®”: A pointer’s bytes could
have the label sets {1}, {2}, {3} and {4} and the source bytes could be labeled with
{5}, {6}, {7} and {8}. Then the first step would be to mix the pointer’s labels, which
results in {1,2,3,4}. This new set is then added to each source label set and these are
applied to the destination bytes. The result is that the destination bytes have the label
sets {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,4,7} and {1,2,3,4,8}.

Another option detaints addresses when the control mask bits are all zero, which means
a potential attacker would have no influence on this data. In the default configuration
this behavior is not enabled, which can cause false positive results. There is also a way
to limit the taint compute number, which will remove the taint in complex operations.

The taint2 plugin also provides callbacks for other plugins. On every taint change the
callback on_ taint_change is called and on every branch, which depends on tainted data,
on__branch?2 is called. In both cases, the called function will get the address of the taint
change and the size in bytes. [74]

The taint mechanism works by inserting extra LLVM operations in the translated
instructions before execution. These extra operations make sure that the label sets and
extra information (control mask, zero and one mask) are correctly applied for each guest
instruction. Furthermore, the taint2 callbacks will be called to notify other plugins of
certain events.

3"https://github.com/panda-re/panda/blob/£69e57d5830079c5deld5eecbbc71396914e4520/

panda/plugins/taint2/taint_ops.cpp#L297-L300


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.

BACKGROUND

28

3.4 Linux System Call Calling Conventions

System calls provide the fundamental interface between user application and the Linux
kernel [75]. On the Intel i386 architecture syscalls are invoked with the instruction
int $0x80. The EAX register sets the number of the requested system, in other words,
it marks which syscall is executed. Furthermore, up to six arguments can be used on
i386. These arguments are passed over in the registers FBX, ECX, EDX, ESI, EDI and
EBP, where the register EBX is used for the first argument, FCX for the second and so
on. The return value of the syscall is store in the FAX register. [76]

The arguments can directly represent the value used by the syscall, for example, in the
system call setpriority [77] the third parameter is the new priority value. The value stored
in the argument registers can also act as a pointer to more complex structures like strings
(for example, the first argument of sethostname [78]) and structs (for example, the first
argument of uname [79]). In case of more complex structures, the kernel is required to
copy in and copy out user data. The implementations of syscalls are not allowed to access
the user space directly so they have to use dedicated functions, like copy_ from__user()
and copy_to_user(), which are responsible for user space interactions. [80]


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Methodology

The stated problem will be solved by a proof of concept implementation, which can
identify side-channels between containers. The basic idea is to label data that enters the
kernel from a containerized process A with a label that marks the data as controllable
by A. If for any reason, like a system call or a series of system calls, A marked bytes
are accessible by a process B, which is executed in another container, then there exists
a channel between A and B, where at least A can write some data and B can read
it. The following sections present the ideas and design choices that aim to identify the
side-channels over the kernel. Furthermore, we discuss the automation strategies to
create a fully automated system that is capable of reporting findings.

4.1 Tainting System Call Input Data

There are two places where input labeling is performed. The first one happens when
a syscall is called. The bytes of the system call argument registers, as described in
Section 3.4, will be labeled additively with a label representing the current process. The
word additively means that the labels already in place will not be removed or overridden
by the new label. The second place where tainting must be performed is when the
processor is in privileged mode (kernel code is executed) and the kernel reads data from
user space. The read data will then be marked with a label of the current process. This
case often occurs when the kernel copies data from the user space to the kernel space but
also fits for syscalls, where the kernel copies data directly from one process to another
without using the kernel space. Like the first case this happens additively.

Although the project PANDA taints dereferenced data, when it is marked by the pointer’s
and the source’ labels (see Section 3.3.2), data located at an offset of a pointer will not be
tainted automatically. This is caused by the calculation of the offset, which is basically
an addition. The operation sets the control mask bits to 0. Moreover, this leads to the
removal of all labels assigned to an address at the next instruction that operates on the

29



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

METHODOLOGY

30

data. Therefore, the second case, where copied in user data will by marked, is essential.
It also allows a better understanding of the syscall input data because every byte directly
(argument registers) and indirectly (copied in from user space) can be logged.

4.2 Detection of Cross-Container Tainted Data

Detection of side-channels happens at three different places. Analog to the first labeling
case, when a system call returns, the registers will be checked for labels of the other
process. Again, all bytes must be checked. The second case exists when the kernel copies
out data to the user space of another process. Once the data is written to the user
space, the application can read the data. If memory is shared between two containers
or pages are reused but not zeroed out, no write operation of this case will be detected.
Furthermore, the second case does not include instances where the kernel runs as an
unrelated process and writes to the user space of a container. Therefore, a third case
checks data reads from the user space if the CPU is in user mode.

4.3 Taint Labels

The taint labels are constructed in such a way that they allow basic comprehensibility.
For each of the two syscall input cases of Section 4.1, a distinct label format (bit mask)
exists. Both formats store which process created them. A label created by the first case,
where the registers are labeled directly when the syscall is called, includes information of
which syscall number was called and which argument it represents.

In the other case, the last syscall number called is stored and a number that is increased
on every creation of this type of label. Once the current number reaches a certain
maximum it starts over from the initial value. It was added because there is not enough
space to store a complete address and this way allows to store some information about
the origin of the label. Please keep in mind, that this information is not unique because
the number periodically starts over.

To reduce the log output, findings can be uniquified, so that one successful found side-
channel label will only show once in the logs. Findings of the first type are considered
equal if they have the same label. The second type findings are different. They are only
the same if the label and the memory address, which was used in the write or read
operation, are equal.

4.4 Automation Strategies

There exist two main operating modes for the developed plugin. It can process a previously
created recording, which has the benefit of being repeatable, meaning multiple analysis
runs always result in the same execution, but its length is always bounded because there
cannot be a recording that has an infinite size. Furthermore, it is not interactive, which


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.4. Automation Strategies

means it is not possible to change the execution during a replay and to see the effect
such a modification would make. The second use of the plugin is to run it live during an
emulation of a whole guest system. This dramatically slows down the execution of the
guest, which could interfere with the guest processes, for example, timeouts are triggered
because the emulation is too slow to fulfill a request. Otherwise this operating mode has
the opposite properties of using a recording. It is not repeatable, it could run forever
and it is interactive.

Due to these properties and the fact that RAM is always bounded we came up with
two possible strategies to use the plugin to find side-channels. In the first case, the
plugin could potentially run forever emulating the whole system while analyzing for
side-channels. However, results cannot be examined closer, by, for example, enabling

specific log messages, because in this operating mode repeatability is not available.

Therefore, an additional fuzzing run is required that should be restricted to the syscalls

occurring in the reported finding. This run could then be recorded for a detailed analysis.

Additionally, snapshots could be created in periodic time intervals to be able to jump
before the involved syscall was called. Please note, that this would still not be truly
repeatable because the execution will most certainly be scheduled differently.

In the other strategy, a recording of arbitrary size would be made first. This recording
would then be analyzed for side-channels. If no finding was reported, then the process
could be repeated by continuing where the last recording stopped. Alternatively, we can
reset the fuzzer to run with a new sequence of random syscalls. This is necessary because
otherwise the system would create very similar recordings in each round. This strategy

has the benefit that once a finding is reported a repeatable recording already exists.

However, it chops up the execution into distinct runs, where one replay analysis can only
detect labels inside one run. In practice this issue is not unique to this strategy because
the first strategy also has a steadily increased RAM consumption. This is because each
byte in the guest’s memory could have up to 232 different labels, which would be up to
264 Bytes (16 Exbibyte) for a 32-bit guest system. Furthermore, the tainting plugin of
PANDA taints hard disk space, which can be arbitrary large'. This means both strategies
need a restart once a memory limit is reached. The difference is that in the first strategy
the supervisor script can react to reaching the limit during the run and in the second
case a useful guess of how long a recording should be must be made before the analysis.

LSimplification. There are limits due to, for example, a finite address space.

31


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Implementation Details

The following sections give an overview of the system and discuss details regarding
the implementation of the developed source code. Chapter 4 acts as a guide for the
implementation in this chapter. Furthermore, we discuss methods that help debugging
and diagnose found results including the information already outputted by our system.

5.1 System Overview

Figure 5.1 illustrates the complete analysis system. It shows the two containers, called
Container 0 and Container 1 in the figure, which contain the system call fuzzing processes.
These processes are illustrated by their main loop, which generates random syscalls. The
syscalls are then executed in the Linux kernel. The aim of this thesis is to find paths
from one containerized process to the other, which is shown by the red dotted line. To
create such a system, the whole operating system is emulated inside a QEMU/PANDA
instance.

The PANDA plugin receives callbacks when certain guest system events occur. Depending
on the callback, addresses are tainted or checked for labels from the other process. For
both tasks, further information, like the process name, will be fetched from the PANDA
core system or other plugins. Once a potential finding occurs, the system reports it and
writes it out to a log file. It is also possible to enable addition logging for certain events.

A control script controls and monitors the described system. It starts a certain PANDA
instance, checks the log output for certain entries, like the number of syscalls, and
monitors the guest system process if it still exists.

33



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5.

IMPLEMENTATION DETAILS

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

34

QEMU Guest System

Container 0

Syscall Fuzzer
fuzz0

Container 1

Callbacks

Yvy

Information
Fetches

PANDA Analysis Plugin

Address Tainting

Check for Labels from the
Other Process

\Syscalls

Y vy

[}
sy
2
DOosa U

Linux Kernel

Start Guest System

Check Status

Optional Debug
Output

| —

Host System

Y

Y

] Check Output |

Control Script Logging Output

Figure 5.1: Overview of the analysis system.

5.2 PANDA Version

The PANDA project is used as a starting point for this thesis. We use the com-
mit £69e57d5830079c5deld5eecbbc71396914e4520 because it already features
much functionality needed for the implementation. At the time, this was the latest
commit of PANDA. However, this version does not have a osi_linux plugin which
supports Linux kernel versions equal or higher that 4.9'. Luckily a fork? from user
eshard exists, which updates the structs and the kernel module for gathering the
offsets to work with newer kernel versions. We merged the fork with the commit
£69e57d5830079c5deldbeechbbc71396914e4520 to get a version that supports
current kernels.

5.3 Retrieving the Currently Running Fuzzing Process

To differentiate the fuzzing processes from another we use the process name. The osi
plugin provides the name of the current process. The Listing 5.1 shows the function that

"https://github.com/panda-re/panda/issues/203
Zhttps://github.com/eshard/panda/commit/2a8d097d101157bba2cae98806b54df4d
587dcb8


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.4. Tainting System Call Registers and Kernel Reads

gets a pointer to a OsiProc struct and returns the number of which fuzzing processes
(fuzz0 or fuzzl) the CPU currently handles. If none of the fuzzing processes are running,
then the function returns -1.

#define PROCESS PREFIX "fuzz"
#define PROCESS PREFIX ILENGTH strlen (PROCESS_PREFIX)

inline int which part(OsiProc *proc)
{
if(
strncmp (
proc—>name,
PROCESS PREFIX,
PROCESS_PREFIX LENGTH
) =0
&& strlen (proc—>name) >= PROCESS PREFIX LENGTH + 1)
return proc—>name [PROCESS_PREFIX LENGTH| — 48;

return —1;
Listing 5.1: Fetch information on which fuzzing process is currently running

The function takes the process name from the proc struct and checks if the first
PROCESS_PREFIX_LENGTH characters equal the expected value fuzz. Furthermore,
the length of the process name must be at least one more than the prefix. If so, then
from the character after fuzz, 48 is subtracted, which converts the character from its
ASCII representation to its integer value. This value is then returned.

5.4 Tainting System Call Registers and Kernel Reads

We use the callback on_all_sys_enter2 to get a function called every time a system
call is called. Registers, which are used as syscall arguments, are marked using the
function taint2_label_reg_additive (). The function must be called for each

byte where the offset parameter tells the tainting plugin which byte will be labeled.

For each syscall all registers are labeled including FAX, which defines, which syscall is
executed. A list of registers, which are used for storing syscall arguments on the i386
architecture, can be found in Section 3.4.

Analog to this, all bytes, which the kernel reads from user space, are labeled with
taint2_label_ram_additive (). This is implemented with the PANDA callback
virt_mem_before_read. However, PANDA’s read callback only passes the source
memory address but not the destination register [69]. The same is true for the write
callback, where only the destination address is handed over. In a first approach, we just
tainted the source address, which leads to false positives, for example, when memory
mapped files are shared in a common Docker image. This behavior is also discussed in

35


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

IMPLEMENTATION DETAILS

36

Section 6.3. Therefore, we added a removal step for the just applied label in the taint
change callback. This makes sure that the label will be applied to the destination of the
read and that the labels of the source will be restored like they were before the read. In
other words, a read operation does not apply labels to the source memory address, it
only adds a label to the destination register.

To fetch whether the CPU currently is in privileged mode, we used the function
panda_in_kernel (). The split between user space and kernel space in Linux is defined
by the compile-time option PAGE__OFFSET, which is typically at 0xC0000000 on 32-bit
systems®. This means the upper 1 GiB of virtual memory is used by the kernel, while the
lower 3 GiB is user space. The function taint2_label_ram_additive () requires a
physical memory address. It can be obtained with the function panda_virt_to_phys ().

A label in PANDA’s tainting plugin has 32 bits. We use 1 bit to indicate which fuzzing
process the label created. 15 bits indicate the number of the syscall argument register or,
in the case of user space reads, a number that is increased on each created label. The
number is set to an initial value greater than the maximum argument register number to
differentiate between the two label types. If all number bits are ones (equals a value of
215 — 1), the number rolls over to the initial value. The remaining 16 bits are used to
indicate the last entered syscall while creating the label.

5.5 Checking System Call Returns and Kernel Writes

Like in the labeling phase, the assigned function to the callback on_all_sys_return2
checks if data labeled by the other fuzzing process is returned to the calling user process.
We created the function get_channel_set (), which fetches all labels assigned to an
address and filters out the labels created by the current process itself. The necessary
memory to store these labels is allocated and extended as the set grows. The calling
function is responsible for freeing the memory.

The function get_channel_set () is used to fetch the label set of every syscall ar-
gument register. In cases where a label does not originate from the current process,
the system reports a finding. By the syscall calling convention, which is discussed in
Section 3.4, only the register FAX returns data. However, we decided to check the same
registers as in the input case because a user program could access them after the syscall
return finishes.

In the check after the kernel writes to user space, the callback virt_mem_after_write
did not show the correct label set. The reason is that the taint2 plugin updates only after
the callback and we did not manage to delay our plugin to a point after the tainting plugin
is executed. The documentation of PANDA says that "[...]| PANDA does not guarantee
any fized ordering for its callbacks across different plugins"[69]. However, plugins can
provide callbacks themselves, so we used the on_taint_change as an entry point for

3https://elinux.org/images/b/b0/Introduction_to_Memory_Management_in_Linux.
pdf


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.6. Dereferenced Pointer Patch

the detection function. The check is only executed if the CPU is in kernel mode and data
is written to user space. As in the labeling phase, the split between kernel space and
user space determines where the destination of the memory copy is. Like the first case,
this function fetches the label set that does not include labels from the current process,
which are then reported as a finding.

The third case, where the CPU executes a user program and reads memory, is similar to
the previous case. However, the corresponding callback virt_mem_after_ read can
be used directly because the labels are already set by a prior writing instruction.

The log output of a finding includes the current fuzzing process, the register or memory
location (virtual and physical) and the labeled data. Furthermore, the control mask, the
compute number and the label are outputted. The label’s information is also extracted,
which includes the process that created the label, the syscall and the register or the
number that identifies memory reads from user space by the kernel.

5.6 Dereferenced Pointer Patch

During the development, we discovered that pointer dereferencing tainting works in
PANDA, however, the control mask is set to the control mask of the source. This leads
to an issue when the source control mask is zero. In this case, the labels are correctly
calculated as described in Section 3.3.2, however, when the next instruction is executed,
all labels will be deleted because an attacker would not have any control over the result.

We propose that, if an attacker has full control over the pointer, the resulting (dereferenced)
data should be under full control because she can point it to any data. Thus, we created
a patch that checks if the pointer’s control mask bits are all ones. If this is the case, it
overrides the resulting control mask with all ones. Moreover, we increased the compute
number by one to indicate that such an operation is performed during the analysis.

bool fully_controlled_ ptr = true;
for (unsigned i = 0; i < ptr_size; i++) {
TaintData td = shad_ptr—>query_ full (ptr + i);
if (td.cb_mask != 0xff)
fully__controlled_ptr = false;
}
if (fully_controlled ptr)
dest_td.cb_mask = O0xff 6 dest td.tcn++;
else
dest__td.cb_mask = byte_td.cb_mask;

Listing 5.2: Parts of the Dereferenced Pointer Patch

The Listing 5.2 shows the code created for the patch. The first part shows a loop that
checks that every byte of the pointer is under full control. The second part overrides the


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

IMPLEMENTATION DETAILS

38

control mask and increases the compute number in case that the pointer is under full
control by an attacker.

This patch is not applicable in general. It does only make sense if the attacker can run
arbitrary code on the victim machine, such that she knows about the location of user data
in the memory. If the attack would be purely remote and without a prior information
leak, then an attacker would have no knowledge about the current location of any data
structure. We assume that this is the reason why PANDA behaves like it does.

5.7 Uniquification of Findings and System Call Skipping

We use the C++ class std: :unordered_set to uniquify the findings. In case of
register syscall findings, the label can be directly used as an uint32_t value. However,
in the other cases, which also include memory addresses, as explained in Section 4.3, we
use a pair of uint32_t values. The values are the label and the addresses, which form
a unique finding when combined. To create a pair, a custom operator was added to the
source code. The operator shifts the first part of a pair 32 bits to the left and then adds
the second part by a bitwise OR.

In practice, especially when debugging a recorded finding, it can be very helpful to skip
the first n syscalls and only then enable the tainting engine. The number of analyzed
syscalls can be cut down, which reduces the findings complexity and shortens the time it
takes for the complete analysis. This feature was implemented by counting to a defined
number. When it is reached, the tainting engine is initialized and tainting is done. After
this the number is no longer increased on every syscall because it is no longer needed.

5.8 Optional Debugging Outputs and Debugging Aid

In the final source code, some sections are intentionally commented out. These allow
debugging of the source code and of findings. There is not a unique way to debug
recordings, therefore we let all code we used in for future use. One example of such a
code section is in the taint change callback. We used it for investigating a potential
finding. The source code logs every taint change, which includes changes in registers,
LLVM local values and physical memory.

It is also possible to adapt existing code for outputting kernel reads/writes from/to the
user/kernel space. The plugin can print out extra information, when, for example, a
write is performed to an examined address. This is especially useful when working with
recordings because the addresses do not change during different replays of the same
recording.

PANDA also provides a checkpointing plugin which creates memory checkpoints during
a replay. With this it should be possible to reverse debug the execution of a recording.
In the case of this thesis, this feature should be very helpful when looking for the source
of a container side-channel. In contrast to this is the "normal" forward debugging, where


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.9. Reported Finding Information

the replay must be restarted every time the debugger should stop the execution before
the current state is reached.

5.9 Reported Finding Information

Listing 5.3 shows the information when a finding is reported. This is a false positive
finding of the type described in Section 6.3.

FOUND CHANNEL! MW RAM at 0xb6f890fe (0x0e025101) is tainted with
other process. This is fuzzl @Oxcl3faceb.

MASK: 0xff

COMPUTE NUMBER: 0

LABEL: 0x0006007d which: 0 register: ESI syscall: 125
DATA: 0x48 H

Listing 5.3: Reported information of a finding

The output shows that a new side-channel has been found and it also prints the type.
In this case, the type is a memory write operation from the kernel space to the user
space containing labeled data from the other fuzzing process. The operation is a four
byte write starting at the virtual address 0xb6£890fe and the byte of the physical
destination address 0x0e025101 is tainted by fuzz0. The instruction pointer is currently
at Oxcl3faceb, which is in the kernel space. If this finding would occur at the return
of a syscall, instead of a memory write, the plugin would also print out the name of the
current syscall.

Furthermore, the plugin outputs the control mask and the computing number, which
means that the byte is under the full control of process fuzz0 and it has not been subject
to any computation. The label itself and the stored information are also printed out.
Here, the label was created by fuzz0 and the byte originates from the ESI register of
the system call with the number 125. The operation wrote the byte 0x48, which is the
letter H in ASCII.

More examples of the output information can be found in Section 6.2.4. The demo replay
discussed there includes all three detection types.

5.10 Automation of Runs

We made use of the QEMU snapshot feature, which allows us to save the current state
of a running virtual machine. Later we can load the snapshot and the virtual machine
continues to run from where the snapshot was taken. This made the startup process much
faster because, for example, we could run the guest system without any instrumentation,
stop it when both containerized syscall fuzzers finished their initialization and then take
a snapshot. One system image can hold multiple snapshots and the commands can be

39


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

IMPLEMENTATION DETAILS

40

entered via the QEMU Monitor?. We use the snapshot feature in the automation script
for a faster startup.

Furthermore, we created a bash® script, which automates certain runs. The script can be
adapted for the current special goal, for example, if only some syscalls should be fuzzed
by selecting a certain snapshot. We ended up with a script that can record a certain
number of bytes, which is followed by analyzing the recording. This corresponds to the
strategy described in Section 4.4.

The development of the script is straightforward. It consists of a loop where a recording
is performed, which is then analyzed. During the second phase the recording emulator
instance is stopped and the log output is checked for reported findings. If the analysis is
finished the process starts all over again. During the execution, the script needs access to
the Monitor of QEMU. It is possible to access the Monitor over the network. In this case,
the option —-monitor tcp:0.0.0.0:5555, server,nowait; was used to make the
recording emulator Monitor accessible. The script accesses the Monitor by piping the
commands to nc[81]. This is used for sending the commands for stopping and continuing
the emulator, starting and ending a recording, loading a snapshot and making screenshots
of the emulator.

Initially, the script would just stop and continue the recording emulator to create
recordings. However, we observed that in some cases the syscall fuzzers stopped calling
random syscalls. The exact reason is unknown but it was probably caused by not enough
free memory available. Our system continued to recognize syscalls from the fuzzing
processes. However, they were always from a small set of syscall. We concluded, that
the fuzzer was not working properly. To mitigate this problem, we created a snapshot
that starts the fuzzers after a delay and we checked that at every start a new seed is
generated®. The first 120 seconds are skipped before a new recording, so that the syscall
fuzzers have time for initialization. This should create a setup, where the guest system
continuously creates new random syscall sequences without the possibility that the guest
system gets stuck indefinitely in any way.

There are multiple checks to see if the analysis is still running or anything has been
found. The script checks that the output log file does not become too large and that the
analysis process still exists. It could not exist, for example, if the replay is finished or the
execution crashed (which should not happen). After an analysis run finishes the loop,
it starts from the beginning by resetting the recording emulator instance to the target
snapshot to create a new recording. If the run has reported any found side-channels, then
a new logging output file is used and the replay is saved under a different name. This
makes it possible to run the process continuously and being able to examine findings at
a later point.

‘https://en.wikibooks.org/wiki/QEMU/Monitor

Shttps://www.gnu.org/software/bash/

5We set the system clock to the value of the hardware clock. This should influence the random
number generator of Linux, although we did not find any sources for this claim.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

5.10. Automation of Runs

Furthermore, the total number of analyzed syscalls is calculated by summing up the
number of system call of each run. The script writes out this number after each analysis
run. Periodically information about the free and used memory and the size of the logging
output file is printed out.

41


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Evaluation and Results

To evaluate the system, we created a test setup that runs idealized test scenarios. This
makes sure that the system is working as intended and proves that we have built a
working system that satisfies the aim of this thesis. Furthermore, we discuss false positive
results and, if applicable, how we stopped the reporting of those. Finally, we present the
results of the analysis runs and some additional facts about their execution.

6.1 Test Setup

All initial tests are run on server hardware equipped with a dual socket Intel' X5675 and
12 GiB of RAM. The tests are run with Alpine? Linux version 3.9 as a guest operating
system. Alpine Linux was also used as the container image. The version of Alpine
features the Linux kernel version 4.19.26-0. To make the Operating System Introspection
work after reboots it is required to disable Kernel Address Space Layout Randomization
at boot time. This can be done by using the kernel boot parameter nokasir>.

Alpine Linux was chosen as guest operating system because it has low system requirements,
it is modern (in contrast to other small size distributions, like Damn Small Linuz*) and
secure®. The low system requirements, especially the required RAM, are necessary for
the taint analysis because it requires at least 16-times the memory of the guest system.
In the following tests, the guest operating system with Alpine Linux and two containers
running syscall fuzzers could run on 256 MiB of RAM.

"https://www.intel.com

2https://alpinelinux.org

3https://access.redhat.com/documentation/enfus/red_hat_enterprise_linux/7/
html/virtualization_security_guide/sect-virtualization_security_guide—-guest_
security-kaslr

“http://www.damnsmalllinux.org

Shttps://alpinelinux.org/about/

43



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

EVALUATION AND RESULTS

44

Alpine Package Keeper, the package manager of Alpine, also features a x86 (32-bit)
compiled version of Docker. Such binaries are not available in all Linux distributions,
for example, the Docker CE setup for Ubuntu’ requires a 64-bit operating system. The
version of Docker used for the tests is 18.09.1-ce. The version of the syscall fuzzer Trinity
used is 1.9.

There are configurations in container engines that could increase the security of con-
tainerized applications, like the usage of more restricted capabilities and seccomp profiles,
or running under non-root user. However, to have the highest chance of finding such a
side-channel and to be in the situation of a default user, we decided to perform the tests
under default settings and without the usage of any LSM.

6.2 Idealized Test Runs

To verify that the developed plugin works as intended, we created idealized test scenarios,
where the system should identify side-channels. However, these are not vulnerabilities
because they require special permissions or a special setup to work. The tests were
recorded using PANDA'’s record and replay functionality. This also eases debugging of
the developed code because replays do not change between startups, which makes finding
programming bugs much easier.

In every test, there are two programs. The first program, referred as fuzz0 in the source
code, executes a syscall that can be seen as a writing action (it sets some value) and the
second program (fuzzl) reads the value directly or fetches data that contains the value.
Performing tests with this construction shows that the implementation of the plugin
works and that it is able identify the described side-channels.

6.2.1 Test Run setpriority and getpriority

The first test is designed to set the priority of the init process and then read the new
value. The test is initially performed without containerization. The init process has
always a PID of 1 [82] and the test is executed as user root.

The program fuzz0, which is listed in Listing 6.1, executes the system call setpriority [77]
with arguments, such that it sets the priority (in this case also known as the nice value)
to an arbitrary value. This syscall is used because it can set the nice value of another
process, whereas the system call nice can only set the value of its own current thread [83].
In the test, we changed the nice value by 7, however, the exact value is not important.
After fuzz0 exits, fuzzl is started, which uses getpriority [77] to retrieve the value that
was just set by fuzz0. Furthermore, it prints out the fetched value. The source code of
fuzz1l can be found in Listing 6.2.

int main(void) {

Shttps://pkgs.alpinelinux.org/package/edge/community/x86/docker
"https://docs.docker.com/install/linux/docker—ce/ubuntu/


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.2. Idealized Test Runs

syscall (SYS_setpriority , PRIO_PROCESS, 1, 7);

return O0;

Listing 6.1: Idealized priority test fuzz0 (include preprocessor directives omitted)

int main(void) {
int n = syscall (SYS_ getpriority , PRIO_PROCESS, 1);
printf("%d\n", n);

return O0;

Listing 6.2: Idealized priority test fuzzl (include preprocessor directives omitted)

After recording the sequence of fuzz0 and fuzzl we analyzed it with the developed plugin,
which successfully identified the priority argument as a side-channel and logged it as a
channel from fuzz0 to fuzzl. The resulted output will be discussed in Section 6.2.4.

6.2.2 Test Run sethostname and uname

To test that the pointer dereferencing part and the copy in and copy out to and from
the kernel space works we created a second test. It works by setting the hostname and
reading it out. Again, this test is initially performed with the root user and without
containerization.

fuzz0 calls the syscall sethostname [78] with an arbitrary string, which sets the hostname
to the string. The source code of fuzz0 is listed in Listing 6.3 and fuzzl can be found in
Listing 6.4. Then the program fuzzl uses the syscall uname [79] (in this case the library
function) to fetch the new hostname. This system call returns the information in a struct
of type struct utsname, which contains additional information, like the operating system
name and the operating system release. On Linux, the member nodename in a struct
utsname is equal to the hostname set by sethostname [79].

int main(void) {
syscall (SYS_sethostname, "demol337", 8);
return O0;

}

Listing 6.3: Idealized hostname test fuzz0 (include preprocessor directives omitted)

int main(void) {
struct utsname s;
uname(&s ) ;
printf("%s\n", s.nodename);
return 0;

}

Listing 6.4: Idealized hostname test fuzzl (include preprocessor directives omitted)

45


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

EVALUATION AND RESULTS

46

The test successfully identified the data copied in by the kernel, which is then stored in
kernel space and finally copied out from kernel space to user space. The output generated
by our plugin can be found in Section 6.2.4.

6.2.3 Test Run in Docker Containers

An additional test was done by running the tests of Section 6.2.1 and 6.2.2 in two
containers. We placed the fuzz0 programs in one container and the fuzz! programs in the
other one. The aim of this test is to show that the unaltered plugin still works if the two
related processes are in two different containers. The design of the test requires access to
a common process. This can be done be setting the PID namespace of the containers to
the host PID namespace by using the command line option ——pid=host®. Moreover,
to access the hostname of the host the UTS namespace is set to the host’s namespace by
using the option ——uts=host?. Furthermore, we started the containers in privileged
mode!? to make sure that they can set and read the priority of the init process and alter
the hostname.

The test yielded the same result as the test without containerization except for the startup
time in one particular setup. If the programs are started using the Docker command
exec'! then the time till fuzz0 and fuzzl are started, is considerable increased. However,
if the programs are started interactively by a shell running inside the container, then
there is no significant difference in the time it takes to analyze a recording. The reason
of the difference is therefore the time the exec command itself takes, although, it is not
analyzed like the processes fuzz0 and fuzzl.

6.2.4 Demo Replay

For demonstrational purposes a replay was recorded, which combines both tests described
in Section 6.2.3 in one analysis run. The file can also be found in the project’s repository!?,
so that it can be used for showing that the developed system works and as an introduction
if someone wants to do further research. The demo uses a Docker image, which contains
a working PANDA system including our plugin. To build the image we provided the
corresponding Dockerfile. The result of running the demo with an instance of the Docker
image is shown in Listing 6.5 and 6.6. The Listings are truncated and split up for better
readability, normally they would be in a single output file with additional information.

syscall name: fuzz0 mno: 97 which: 0 EAX: 0x00000061
EBX: 0x00000000 ECX: 0x00000001 EDX: 0x00000007
ESI: Oxbffffe00 EDI: 0xb7ffcf7c EBP: Oxbffffd7c

8https://docs.docker.com/engine/reference/run/#pid-settings---pid
https://docs.docker.com/engine/reference/run/#uts-settings—--uts
Onttps://docs.docker.com/engine/reference/run/#runtime-privilege—
and-linux-capabilities
Upttps://docs.docker.com/engine/reference/commandline/exec/
2https://gitlab.sba-research.org/theses/container-side—-channel—
identification


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.2. Idealized Test Runs

...

syscall name: fuzz0 mno: 74 which: 0 EAX: 0x0000004a
EBX: 0x00402000 ECX: 0x00000008 EDX: 0x00401224
ESI: Oxbffffdf0 EDI: 0xb7ffcf7c EBP: Oxbffffd6c
[...]

before user read, add label: 0x0040004a at 0x00402000
(pa: 0x0bb2f000) size 1

read user 0x00402000 which: 0 data: 0x64

before user read, add label: 0x0041004a at 0x00402001
(pa: 0x0bb2f001) size 1

read user 0x00402001 which: 0 data: 0x65

before user read, add label: 0x0042004a at 0x00402002
(pa: 0x0bb2f002) size 1

read user 0x00402002 which: 0 data: 0x6d

before user read, add label: 0x0043004a at 0x00402003
(pa: 0x0bb2f003) size 1

read user 0x00402003 which: 0 data: 0x6f

before user read, add label: 0x0044004a at 0x00402004
(pa: 0x0bb2f004) size 4

before user read, add label: 0x0044004a at 0x00402004
(pa: 0x0bb2f005) size 4

before user read, add label: 0x0044004a at 0x00402004
(pa: 0x0bb2f006) size 4

before user read, add label: 0x0044004a at 0x00402004
(pa: 0x0bb2f007) size 4

read user 0x00402004 which: 0 data: 0x31333337

Listing 6.5: Output of demo replay (only the labeling is listed)

In the demo both fuzz0 processes run after another and then the fuzz! processes are
started. Listing 6.5 shows the labeling of the priority value and the new hostname. The
first entry is the setpriority syscall from the process fuzz0, which has the number 97'3.
The ECX register corresponds to the PID of the init process, which is 1, and EDX is the
relative value of the new process priority (nice value) [77, 83].

The second syscall is sethostname, which is also executed by fuzz0 and sets the hostname
to the value stored at the value of EBX. In this case, the register acts as a pointer to the
new hostname string. Furthermore, you can see that the string is then copied in by the
kernel, so that it is stored in the kernel memory space. The copy routine first separately
copies the first 4 bytes of the string and then copies the last 4 bytes at once. For each
new read operation, a new label is created and assigned to the data. As you may saw
from the data of the string, the new hostname is "demo1337".

3As a source of i386 system calls, https://github.com/torvalds/linux/blob/master/
arch/x86/entry/syscalls/syscall_32.tbl and https://syscalls32.paolostivanin.
com can be used.

47


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. EVALUATION AND RESULTS
FOUND CHANNEL! Register 0 is tainted with other process.
This is fuzzl sys_getpriority @QOxb7f6fcOc.
MASK: Oxffffffffffffffff
COMPUTE NUMBER: 2
LABEL: 0x00020061 which: 0 register: EDX syscall: 97
DATA: 0x0000000d
FOUND CHANNEL! MR RAM at O0xbffffd90 (0x05ad1d90) is tainted
with other process. This is fuzzl @QOxb7f8df3d.
MASK: 0xff
COMPUTE NUMBER: 2
LABEL: 0x00020061 which: 0 register: EDX syscall: 97
DATA: 0x0d
FOUND CHANNEL! MW RAM at Oxbffffc84 (0x096f6¢87) is tainted
with other process. This is fuzzl @Oxcl3fad28.
MASK: 0xff
COMPUTE NUMBER: 1
LABEL: 0x0003004a which: 0 register: EBX syscall: 74
DATA: 0x64 d
FOUND CHANNEL! MW RAM at Oxbffffc84 (0x096f6¢87) is tainted
with other process. This is fuzzl @QOxcl3fad28.
MASK: 0xff
COMPUTE NUMBER.: 1
LABEL: 0x0040004a which: 0 register: 777 syscall: 74
DATA: 0x64 d
FOUND CHANNEL! MW RAM at Oxbffffc88 (0x096f6c88) is tainted
with other process. This is fuzzl @Oxcl3fad28.
MASK: 0xff
(OOMPUTE NUMBER: 0
LABEL: 0x0041004a which: 0 register: 777 syscall: 74
DATA: 0x65 e
Listing 6.6: Output of demo replay (only the identification is listed)
In Listing 6.6 the identification output of the side-channels is listed. At first there are
two entries of the priority channel. The first is at the end of the syscall getpriority and
has a return value that is tainted with a label from fuzz0. As you can see, all bits are
controlled by the other process and the value has been involved in a computing operation.
Encoded in the label, we stored information about its source, in this case, which process,
the register and the syscall number. Compared to the output of Listing 6.5 the register
48


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.3. Early Fuzzing Attempts and False Positives

and the syscall number match with information previously printed out. The new priority
value is now 0x0d because the initial value was 20 and 20 — 7 = 13, which is 0x0d in
hexadecimal. There is more than one output for the value because it is used in user space
more than once, for example, it is printed out in the program. The listing shows that,
after the syscall returns, the value is only read in user space. This is indicated by MR,
which means memory read.

The lower half is the output for the hostname side-channel. The output is like the finding
described before, however, in this case, the kernel copies the hostname string to the user
space. This is indicated by MW, which stand for memory write. Again, the bytes are
under full control by an attacker and the compute number of 1 means that, in this case,
the initial value was used as a pointer, which increases the compute number by one.
This is part of the pointer patch discussed in Section 5.6. With PANDA one address
corresponds to one compute number, thus all labels of one address share one compute
number. There are two findings for the first letter because it has two different labels, one
from the register tainting at the beginning of the syscall and one when the data is copied
in. The second case is indicated by the "?77" in the register output because this field, the
number of the syscall argument register, is only available during a syscall enter. The last
finding of Listing 6.6 shows the second letter of the hostname. The rest of the string is
omitted for readability, but can be found in the real output of the demo.

The reason the virtual address of the hostname string is not consist (in contrast to the
physical address) is that the detection is performed in the taint change callback, which
only gives developers the physical address. However, as far as we know there is no efficient
way to get a virtual address from a physical one, therefore we use the last address that
was used by the write callback. We understand this value as a guess. In practice, this is
not a real problem because we can determine the correct virtual address from the other
findings and from the repeatability of the replay.

The demo shows both cases when memory will be marked, as a syscall argument and
when it is copied to kernel space, and all three cases when it leaves the kernel or is
processed in user space by the other process. Therefore, the demo shows that our system
works as intended and can detect the described side-channels.

6.3 Early Fuzzing Attempts and False Positives

After the verification that the plugin is capable to find cross-container side-channels we
continued with the fuzzing runs. These runs are intended to find the channels instead of
developing and testing the software. We switched the hardware to a dedicated server with
64 GiB of RAM and an Intel i7-7700 CPU. We used the automation strategy implemented
as discussed in Section 5.10. Initially, we used a recording size of 500 MiB, however, in
some cases the server did run out of system memory and used the 32 GiB swap memory,
which decreased the performance significantly. The automation script also stopped twice
because there was not enough free memory left. Therefore, we decided to reduce the
recording size to 100 MiB and to increase the swap to 32 GiB 4+ 100 GiB. Furthermore,

49


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

EVALUATION AND RESULTS

50

we periodically checked that the swap memory is not used extensively. If this should be
the case, the analysis process is stopped and the loops starts from the beginning. This
configuration turned out to be much more stable, as it did not stop running for six weeks.

During the development and early usage of the plugin we came across interesting false
positive results. These are results that are reported as a successful side-channel but they
are not. If applicable, we improved the implementation of the developed plugin such that
false positives of the corresponding kind are not reported any more.

Write Operations that Use Two Pages

We produced a replay file that shows a wrong behavior during the after write callback
and the taint change callback. The first callback provides the address and a buffer with
the written data and the second gives information whenever a label of an address changes.
The problem exists when a write operation affecting multiple bytes is performed and
the destination memory resides on two memory pages. Only the first bytes are tainted
correctly and instead of the latter bytes, the bytes following in the physical memory
space are tainted.

Up to now, we have not figured out the origin of this behavior in the PANDA source
code. It is probable a bug in the taint plugin of PANDA. This behavior resulted in a
false positive because the taint engine of PANDA changed the label of all four bytes
although only two are written successfully. The last two bytes are presumably mapped
on another page in the other fuzzing process, which cause the developed plugin to report
a finding when these bytes are read. This is a false positive because the data was in fact
not written, so no information is exchanged between the two processes.

Output buf of callback:

VWAWC buf phy: 0x0a3fbffe (vir: 0x04b83ffe): 0x30

VWAWC buf phy: 0x0a3fbfff (vir: 0x04b83fff): 0x78

VWAWC buf phy: 0x0bd17000 (vir: 0x04b84000): 0x30 <— Correct
"jump" of physical address (another page)

VWAWC buf phy: 0x0bd17001 (vir: 0x04b84001): 0x2c

Output buf2, consecutive physical memory starting with

Oxa3fbffe:

VMAWC buf2 phy: 0x0a3fbffe: 0x30

VMAWC buf2 phy: 0x0a3fbfff: 0x78

VMAWC buf2 phy: 0x0a3fc000: 0x08 <— Consecutive bytes contain

VMAWC buf2 phy: 0x0a3fc001: 0x00 0x08 and 0x00

taint__change phy: 0x0a3fbffe size: 1

Mem: 0x30

Labels: 0x00000666

taint__change phy: 0x0a3fbfff size: 1

Mem: 0x78

Labels: 0x00000666


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.3. Early Fuzzing Attempts and False Positives

taint_change phy: 0x0a3fc000 size: 1 <— Should be 0x0bd17000
Mem: 0x08 and 0x30
Labels: 0x00000666
taint__change phy: 0x0a3fc001 size: 1 <— Should be 0x0bd17001
Mem: 0x00 and 0x2c
Labels: 0x00000666

Listing 6.7: Output of the test plugin including annotations

To further examine the issue, we created a test plugin that just works with the afore-
mentioned recording. Listing 6.7 shows the output of the plugin. It consists of three
parts. The first part shows the buffer that the after write callback retrieves with the
corresponding physical address. Please note the first annotation. It marks the beginning
of a new memory page, which is shown in the change of the physical address. The middle
part shows the bytes following the physical address of the initial address translation. As
you can see the memory content of these locations is 0x08 and 0x00. The final part
consists of the taint change callback. It shows that the wrong memory location is labeled.
Instead of using the next page, the initial translation to the physical address space is
taken and the required offset is added. However, this is wrong because in this case the
latter bytes of the write operation would be written to another page.

We propose that this issue could be fixed by checking the taint operation after every
write and correcting it. However, this would significantly decrease the performance of the
analysis because for every byte written our plugin would perform the translation to the
physical address again and compare it to the information of the taint change callback.
The false behavior only occurred infrequent and is easy to spot, so we decided that it is
not worth it to implement such a fix. We submitted an issue report to the repository of
PANDA! . The report includes the test plugin which demonstrates the problem. The
issue is still marked as open and there is currently!® no fix available in the master or in
an alternative branch.

Labeling of Read-Only Data

In an early version of the plugin, the source of a user space read operation was also tainted.
We did this because the read callbacks only provide the source memory address and not
the destination register. Therefore, we labeled the source before the read operation was
executed such that the tainting plugin would take the labels from the source and copies
them to the destination register. However, this leads to a false positive. We observed
a finding where a file is opened in memory by both fuzzing processes at their startup
phase. The data that is copied in during the opening (the file path and one or two bytes,
presumably, for alignment) is tainted. We observed that the page with the constant

strings is shared between the containers because they share the same physical address.

When the first fuzzing process marks copied in addresses and the second one uses them

Yyttps://github.com/panda-re/panda/issues/441
15 As of August 11, 2019

51


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

EVALUATION AND RESULTS

52

too, then the result will be reported as a finding. However, this is a false positive finding
because no information was exchanged.

We wrote a small program that changes its own data and program code as writeable.
The program was then executed in two different containers. If no data is written by any
instance the memory pages can be shared between the program. Once a write access is
performed by one of the programs, the kernel makes a copy of the page for each process.
Thus, it is not possible to exchange data between the two processes.

Furthermore, in cases, where the program already existed in the container image, the
data is not written back to the file in the image. Each container has its own copy of
the program. We tried writing to a memory address before the program’s write with an
attached debugger and the changes were written to the image file. Please note, that this
was done outside the guest machine. This is not possible during normal (non-emulated)
operation. This behavior shows that if no write is performed, containerized programs can
share pages of the container image but changes create their own copy of the mapped file.

We partially fixed the reporting of this false positive by removing the applied label after
the read operation, while leaving all other labels intact. This taints only the destination
register with the new label and not the source memory address. For details on the
implementation of this behavior, please see Section 5.4. During the final use of the system
we discovered that in rare cases the label is not removed successfully. However, it would
be quite easy to distinguish between real findings and these false positives because, for
example, the examined syscall does not perform any write operation.

6.4 Results

The described procedure of Section 5.10 was running for 1030 hours, or about 42 days.
The snapshot, which executed two fuzzing processes in two Docker containers, was
configured to fuzz 316 distinct syscalls. During this run 193,982,020 emulated syscalls
were executed and analyzed, although, the number of real fuzzed syscalls is significantly
lower. We observed that many calls have the same syscall number, so we filtered out
these very common syscalls and were left with only 9,932,990 syscalls. This indicates that
Trinity has a rather large overhead in our setup. From these numbers, we calculate an
average of 52.3 overall syscalls analyzed per second and 2.68 per second random syscalls
with fuzzing data.

These syscalls were distributed in 100 MiB recordings. The average time to create such a
recording was 6.25 minutes on the fuzzing server. During the 42 days 162 individual runs
were created and subsequently analyzed. On average, the system needed 5.93 hours to
completely analyze a recording. However, this varies significantly, with a sample standard
deviation of s = 3.98 hours. This is caused by fact that the taint analysis is focused
on the instructions in kernel mode. When a recording consists mainly of user program
instructions the time to analyze it will be significantly shorter.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.4. Results

80

70 — /_/ /w

[T

o
3

0
)

2

.
}\E?’
: SN
T
f@F\ L
BN
3 N
W

RAM+Swap Usage [GiB]
S
8

-
1
£ Tj‘\H

C

i
][

w
8

58!

SChI SE T
BRSNS

mishis

20

I B )
HJL .

P E——

°
~ 1
IS
)
)
5 _
IS
3
"
&

Time [h]

Figure 6.1: System RAM and swap usage over time.

The Figure 6.1 shows the memory consumption, RAM and swap usage, of all analysis
runs. The maximum duration an analysis run needed was 14.48 hours and one recording
did need the full system RAM in about 27 minutes. Furthermore, the figure shows that
some runs reached the maximum memory usage limit and that at the end of a run the
memory is freed before the process exits. The memory measurements were performed
with a resolution of 30 seconds.

During the 6 weeks, the recording halted before reaching 100 MiB three times. We propose
that a potential cause is the syscall fuzzer. It may have crashed the kernel in these cases,
which halts the emulated machine and stops any further recording. To mitigate this
problem, a timeout could be added to the recording stage that could continue the script
although the recording has not reached the 100 MiB limit.

The implemented automation strategy stores the replay files, the log outputs of the plugin
runs and a log file for the automation script. The plugin output logs contain the syscalls
called, the data copied from user space into kernel space and the reported findings. We
used their file size to calculate an average of 10.03 GiB per analyzed recording with a
s = 7.94 GiB.

Overall we could not identify any issues that have a real impact on Docker container
isolation.

53


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Discussion and Future Work

We demonstrated that the developed system is capable of detecting side-channels over
the kernel. This is shown in Section 6.2, where we use idealized versions of container
setups. In these cases, we expected to see a reported finding. The idealized versions
extend the containerized processes’ default permissions, such that the test programs are
allowed to change the state of the host system, which also influences the behavior of the
other container under test. Thus, we can be sure that the system is indeed capable of
reporting real-world information leakage between containers.

The false positives, which occurred during analysis runs, further increased the confidence
by showing that the developed plugin does work but that in these cases the findings
are not real vulnerabilities. This is especially true for the labeling of read-only data
(Section 6.3), where the system did correctly detect access to a shared page, which cannot
be influenced by an attacker.

The results of the automated runs indicate that the current isolation of a default Docker
container is adequate. We propose that there are no "obvious" side-channels over the
kernel because there are currently only two objects that are not namespaced, as discussed
in Section 3.2.1, and these objects cannot be changed from within a default container.
Therefore, we currently do not know of any side-channels of the type described in
this thesis when the default configuration is used. However, in cases where additional
permissions or namespaces are shared, the isolation quickly breaks down. We showed
this with the setup of our idealized tests.

Due to time and resource constraints we decided to focus on a single container engine
and system call fuzzer combination. Future work could improve this by running other
combinations on multiple machines to increase the likelihood of finding side-channels.
However, this would require increased expenses.

To improve the chance of finding a side-channel we could replace the random syscall
fuzzer with a program that adds human knowledge, which tests, for example, only certain

95



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. DISCUSSION AND FUTURE WORK

56

syscalls with defined parameters. This reduces the search space and would therefore
increase the likelihood that in a given time span a syscall combination occurs that results
in a reported finding. However, it could also restrict the system in such a way that the
more obscure combinations would never be found. The current implementation works
unopinionated, which means that each syscall is equally likely to be called.

During the beginning of the fuzzing we had to stop and restart the automated process
multiple times and adjust certain configurations, like the size of the recordings and
the maximum memory an analysis run can to use. For the demonstrational purposes
of this thesis, the configuration we chose is conservative to focus on stability instead
of performance. In the future, these numbers could be improved to create a better
performing system, which means in context of this thesis that overall more system calls
are analyzed per time period.

Although the setup of the analysis runs did only include Docker as the container engine,
many security properties are shared between different software products. This means
that the results are also meaningful for all the software that uses the same configuration
for process isolation. We examined that the default seccomp profile and the default list
of capabilities of Docker can be found in other container engines. These findings are
discussed in Section 3.1.3.

This work also acts as a basis for detecting information exchange in other implementations
of process isolation. For example, to test the interaction of different processes when
constrained by a Mandatory Access Control module (LSM), seccomp in filter mode or
file permissions. To use the plugin just the program for trying to interact with another
process must be exchanged in our current setup. Such a program could then focus on
operations that, for example, test file access or inter-process communication.

Further improvements for the comprehensibility of found side-channels would include
the increase in information stored in one label. For this, the PANDA source code could
be changed in such a way that it supports more than the default 32 bits in one label.
However, this would also increase the amount of memory needed to do a given analysis
run. Alternatively, multiple labels can be used to store more information by using certain
bits to indicate which type of label it represents. A two-stage approach would be possible
too, where in the first stage the detection is performed with default sized labels and later
parts of the recording are examined further with more information stored per label.

We demonstrated our system by creating idealized tests. We came up with our own
idea on how to test the information leakage between containers by extending the default
permissions and making changes of the default namespace configuration. As far as we
know, there exists no extensive list of configuration options of Docker (or other container
engines) and the potential vulnerabilities they imply. For example, if a user sets the PID
namespace of containers to the host’s namespace, then the containers could communicate
unconfined by creating processes with certain names. The process name would then
contain the data a container wants to share with others. Therefore, we propose further
research of container configuration and the security impact they may entail.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

We also propose that there could be further improvements in how the taint analysis
works in PANDA, although the current version of PANDA’s taint2 plugin is about ten
times faster than the first version [74]. Currently, the QEMU’s TCG and the helper
functions are translated to LLVM’s intermediate representation. Hypothetically it should
be possible to combine these steps to one intermediate representation, which would then
be executed faster because the intermediate steps would be omitted. However, this would
require a complete rewrite of the current implementation of QEMU and PANDA, which
probably takes a large amount of time and effort.

o7


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

We defined a potential vulnerability in the context of isolation of containers and presented
a novel approach to automatically identify such side-channels. Due to the construction
of Linux containers, our system tests the complete stack when running containers. This
includes the setup profiles, with configuration about capabilities and the seccomp filter,
and the operating system kernel itself. We showed that our system works, although the
comprehensibility could be improved in the future. We evaluated the system by creating
idealized tests that use extended (non-default) permissions and our software successfully
identifies the test side-channels.

Furthermore, we designed and implemented a strategy to execute our system automatically.
This fuzzing setup was then executed for six weeks, which showed that the system runs
stable. It is therefore capable to run for any arbitrary timespan and will continuously
report findings if any occur. We minimized the encountered false positives by developing
countermeasures or reporting them to the corresponding project.

We presented the results of this fuzzing run and calculate certain metrics from the created
log data. Overall, during the 42 days 9,932,990 random fuzzing syscalls were executed
and analyzed. This results in 2.68 analyzed syscalls per second. Therefore, we propose
that there is the need to execute our system on a larger scale and possibly with other
types of software, like application sandboxes. We also show that other fields exist, which
could benefit from our software. Furthermore, we argue that our results are not unique
to Docker because other container software, like rkt and Apache Mesos, use the same
default security profiles.

Although we did not discover vulnerabilities in the default configuration of Docker, this
thesis shows how important it is to the reduce the number of added capabilities to the
bare minimum, which is required for the executed task. Excessive capabilities or running
in privileged mode can lead to an increase of damage once an attacker has gained control
of a container. We showed with the idealized tests and in the demo that side-channels

29



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

8.

CONCLUSION

60

over the kernel could easily occur when a container is started with certain extended
permissions. If the isolation is a strong requirement for production application and
the feature set of container engines is required, then Kata containers could be a viable
solution. Users can deploy each container in a different virtual machine with the interface
of container engines. Therefore, Kata containers combine the benefits of containers,
the easier setup and administration, and virtual machines, the better isolation between
instances.

Overall, the current situation in the context of isolation is not bad for users of Docker
and other container engines on Linux. Many vulnerabilities found in the last year are
problems related to the setup or interaction with containers, which is not this work’s
aim, where we solely focus on the case of already running containers. Information leaks
and container breakouts have been found in container engines. Often such vulnerabilities
are not unique to one engine, therefore a security bugfix in a shared component improves
the security of all affected software products. Containers are an adequate solution when
it comes to application isolation, especially in cases where different services used to be
deployed directly on a single host.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

3.1

3.2
3.3

5.1

6.1

List of Figures

Differences between a hypervisor-based deployment and a container-based

deployment. Figures taken from [39]. . . . . . . ... ... ... ... ... 14
Overview of the Docker architecture. Figure taken from [44]. . . . . . .. 15
Overview of the PANDA instruction translation. Figure taken from [33]. . 25
Overview of the analysis system. . . . . . ... ... ... .. ....... 34
System RAM and swap usage over time. . . . . . . . ... ... ...... 53

61


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

List of Algorithms

23

3.1 Capability Algorithm for Threads

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

63

qny a8pajmoud| INoA

Saylolqie


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.1
5.1
5.2
5.3
6.1
6.2
6.3
6.4
6.5
6.6
6.7

Listings

Trinity fuzzer code for the syscall rt_sigaction . . ... ... ... ..
Fetch information on which fuzzing process is currently running . . . .
Parts of the Dereferenced Pointer Patch . . . . .. ... ... .. ...
Reported information of a finding . . . . . . .. ... ... ... ...
Idealized priority test fuzz0 (include preprocessor directives omitted) .
Idealized priority test fuzzl (include preprocessor directives omitted) .
Idealized hostname test fuzz0 (include preprocessor directives omitted)
Idealized hostname test fuzzl (include preprocessor directives omitted)
Output of demo replay (only the labeling is listed) . . . . . ... ...
Output of demo replay (only the identification is listed) . . . . . . ..
Output of the test plugin including annotations . . . . . . . .. .. ..

10
35
37
39
44
45
45
45
46
48
50

65


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abbreviations

API Application Programming Interface. 15, 16

ASCII American Standard Code for Information Interchange. 35, 39
BPF Berkeley Packet Filter. 23, 24

CLI Command-line Interface. 15, 16
CPU Central Processing Unit. 2, 6-8, 26, 30, 35-37, 49

DoS Denial of Service. 3

DRAM Dynamic Random Access Memory. 7
GID Group ID. 22

IaaS Infrastructure as a Service. 3
IP Internet Protocol. 17

IPC Interprocess Communication. 17
KASLR Kernel Address Space Layout Randomization. 43

LLVM Low Level Virtual Machine. 9, 25-27, 38, 57
LSM Linux Security Module. 2, 24, 44, 56

MAC Mandatory Access Control. 24, 56
NIS Network Information System. 18

OCI Open Container Initiative. 15, 16

OSI Operating System Introspection. 9, 43

67


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

PaaS Platform as a Service. 6

PANDA Platform for Architecture-Neutral Dynamic Analysis. 9, 10, 24-27, 29, 31,
33-38, 44, 46, 49-51, 56, 57, 61

PID Process ID Number. 5, 18, 26, 44, 46, 47, 56

PIRATE Platform for Intermediate Representation-based Analyses of Tainted Execu-
tion. 9

POSIX Portable Operating System Interface. 17

PPID Parent Process ID Number. 26

RAM Random-Access Memory. 26, 31, 43, 49, 53

RSA Ron Rivest, Adi Shamir and Leonard Adleman (Cryptosystem). 7

S2E Selective Symbolic Execution. 25
SGID Set Group ID. 22

SSH Secure Shell. 7

SUID Set User ID. 21-23

TCG Tiny Code Generator. 25, 57

UID User ID. 22
UTS Unix Time Sharing. 18, 46

68


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

“Containers as the foundation for DevOps collaboration.”
https://docs.microsoft.com/en-us/dotnet /standard /
containerized-lifecycle-architecture/docker-application-lifecycle /containers-
foundation-for-devops-collaboration, 2019. [Online; accessed 14-April-2019).

M. Ferranti, “2017 Annual Container Adoption Survey: Huge Growth in Contain-
ers” https://portworx.com/201l7-container—adoption-survey/, 2017.
[Online; accessed 19-April-2019].

K. Buckley, “Featured Data: Application container market revenue ex-
pected to quadruple by 2021 https://45lresearch.com/blog/
1657-featured-insight, 2017. [Online; accessed 10-May-2019].

C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2,
no. 3, pp. 24-31, 2015.

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Co-residency detection
in the cloud via side-channel analysis,” in 2011 IEEE symposium on security and
privacy, pp. 313-328, IEEE, 2011.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-tenant side-channel
attacks in paas clouds,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 990-1003, ACM, 2014.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel
memory from user space,” in 27th USENIX Security Symposium (USENIX Security
18), 2018.

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 40th IEEE Symposium on Security and Privacy (S€P’19),
2019.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-NG: Breaking the

69


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[10]

[11]

[12]

[13]

[14]

[15]

70

virtual memory abstraction with transient out-of-order execution,” Technical report,
2018. See also USENIX Security paper Foreshadow [24].

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher, and
D. Gruss, “ZombielLoad: Cross-privilege-boundary data sampling,” arXiv:1905.05726,
2019.

J. Hertz, “Abusing privileged and unprivileged linux containers,” Whitepaper, NCC
Group, vol. 48, 2016.

“CAPABILITIES(7).” http://man7.org/linux/man-pages/man7/
capabilities.7.html, 2019. [Online; accessed 30-March-2019].

“OPEN_BY_HANDLE_AT(2).” http://man7.org/linux/man-pages/
man2/open_by_handle_at.2.html, 2019. [Online; accessed 27-June-2019].

7

J. Andre, “Docker breakout exploit analysis.” https://medium.com/Q@fun_
cuddles/docker—-breakout—-exploit-analysis—-a274f£f£f0e6b3, 2014.
[Online; accessed 27-June-2019].

Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise, 13 cache
side-channel attack,” in 23rd { USENIX} Security Symposium ({ USENIX} Security
14), pp. 7T19-732, 2014.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures: the
case of aes,” in Cryptographers’ track at the RSA conference, pp. 1-20, Springer,
2006.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in 2015 IEEE Symposium on Security and Privacy, pp. 605—
622, IEEE, 2015.

0. Aciigmez, C. K. Kog, and J.-P. Seifert, “On the power of simple branch prediction
analysis,” in Proceedings of the 2nd ACM symposium on Information, computer and
communications security, pp. 312-320, ACM, 2007.

O. Aciigmez, C. K. Koc¢, and J.-P. Seifert, “Predicting secret keys via branch
prediction,” in Cryptographers’ Track at the RSA Conference, pp. 225242, Springer,
2007.

O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2019.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and
O. Mutlu, “Flipping bits in memory without accessing them: An experimental
study of dram disturbance errors,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ISCA 14, (Piscataway, NJ, USA), pp. 361—
372, IEEE Press, 2014.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[22]

[23]

[24]

[31]

32]

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote software-induced
fault attack in javascript,” in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pp. 300-321, Springer, 2016.

A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading bits in memory
without accessing them,” in /1st IEEE Symposium on Security and Privacy (S&P),
2020.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silber-
stein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order execution,” in Proceedings of
the 27th USENIX Security Symposium, USENIX Association, August 2018. See also
technical report Foreshadow-NG [9].

M. Jurczyk, “Detecting kernel memory disclosure with x86 emulation and taint
tracking,” 2018.

F. Wilhelm, “Tracing privileged memory accesses to discover software vulnerabilities,”
master thesis, Operating Systems Group, Karlsruhe Institute of Technology (KIT),
Germany, Nov.30 2015.

B. Gowda, “A peek into Extended Page Tables” https://itpeernetwork.
intel.com/a-peek-into-extended-page-tables/, 2009. [Online; ac-
cessed 15-April-2019].

A. Lanzi, M. I. Sharif, W. Lee, et al., “K-tracer: A system for extracting kernel
malware behavior.,” in NDSS, pp. 255-264, 2009.

H. Yin and D. Song, “Whole-system fine-grained taint analysis for automatic malware
detection and analysis,” Technical paper. College of William and Mary & Carnegie
Mellon University, 2006.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama: capturing system-
wide information flow for malware detection and analysis,” in Proceedings of the 14th
ACM conference on Computer and communications security, pp. 116-127, ACM,
2007.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum, “Understanding
data lifetime via whole system simulation,” in USENIX Security Symposium, pp. 321—
336, 2004.

R. Whelan, T. Leek, and D. Kaeli, “Architecture-independent dynamic information
flow tracking,” in International Conference on Compiler Construction, pp. 144—163,
Springer, 2013.

B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Repeatable reverse
engineering with panda,” in Proceedings of the 5th Program Protection and Reverse
Engineering Workshop, p. 4, ACM, 2015.

71


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[34] “Fuzzing” https://www.owasp.org/index.php/Fuzzing, 2018. [Online; ac-
cessed 14-April-2019].

[35] “Trinity: Linux system call fuzzer.” https://github.com/kernelslacker/
trinity/blob/master/README, 2017. [Online; accessed 14-April-2019].

[36] B. Garn and D. E. Simos, “Eris: A tool for combinatorial testing of the linux system
call interface,” in 2014 IEEE Seventh International Conference on Software Testing,
Verification and Validation Workshops, pp. 5867, IEEE, 2014.

[37] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kAFL: Hardware-
Assisted Feedback Fuzzing for OS Kernels,” in USENIX Security Symposium, 2017.

[38] “What is a  Container?”  https://www.docker.com/resources/
what-container. [Online; accessed 8-April-2019].

[39] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE
Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

[40] M. Eder, “Hypervisor-vs. container-based virtualization,” Future Internet (FI) and
Innovative Internet Technologies and Mobile Communications (IITM), vol. 1, 2016.

[41] J. Cito and H. C. Gall, “Using docker containers to improve reproducibility in
software engineering research,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion (ICSE-C), pp. 906-907, May 2016.

[42] S. J.  Vaughan-Nichols, “What is  Docker and why is it
SO darn popular?.” https://www.zdnet.com/article/
what-is-docker-and-why-is—-it-so-darn-popular/, 2018. [Online;

accessed 8-April-2019].

[43] “8 SURPRISING FACTS ABOUT REAL DOCKER ADOPTION. https://www.
datadoghqg.com/docker—adoption/, 2018. [Online; accessed 8-April-2019).

[44] M. Crosby, “WHAT IS CONTAINERD ?” https://blog.docker.com/2017/
08/what-is—-containerd-runtime/, 2017. [Online; accessed 8-April-2019].

[45] “rkt wvs other projects” https://github.com/rkt/rkt/blob/master/
Documentation/rkt-vs—other—-projects.md, 2017. [Online; accessed 15-
June-2019].

[46] “Seccomp Isolators Guide.” https://github.com/rkt/rkt/blob/
a2f63178ee7749a4e90a2882744774dbd03bb425/Documentation/
seccomp-guide.md, 2019. [Online; accessed 15-June-2019].

[47] “App Container Executor.” https://github.com/appc/spec/blob/master/
spec/ace.md, 2017. [Online; accessed 15-June-2019].

72


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

“Linux Seccomp Support in Mesos Containerizer.” http://mesos.apache.org/
documentation/latest/isolators/linux-seccomp/. [Online; accessed 15-
June-2019].

“The current Flatpak sandbox.” https://github.com/flatpak/flatpak/
wiki/Sandbox#the-current-flatpak-sandbox, 2018. [Online; accessed 16-
June-2019].

“NAMESPACES(7).” http://man7.org/linux/man-pages/man7/
namespaces.7.html, 2019. [Online; accessed 29-March-2019].
“CGROUP_NAMESPACES(7).” http://man7.org/linux/man-pages/

man7/cgroup_namespaces.7.html, 2019. [Online; accessed 30-March-2019].

“NETWORK_NAMESPACES(7)” http://man7.org/linux/man-pages/
man7/network_namespaces.7.html, 2018. [Online; accessed 29-March-2019].

“MOUNT_NAMESPACES(7)” http://man7.org/linux/man-pages/man7/
mount_namespaces.7.html, 2018. [Online; accessed 29-March-2019].

“PID_NAMESPACES(7).” http://man7.org/linux/man—pages/man7/
pid_namespaces.7.html, 2019. [Online; accessed 29-March-2019].

“USER_NAMESPACES(7)” http://man7.org/linux/man-pages/man7/
user_namespaces.7.html, 2019. [Online; accessed 29-March-2019].

“CLONE(2).” http://man7.org/linux/man-pages/man2/clone.2.html,
2019. [Online; accessed 30-March-2019].

“SETNS(2).” http://man7.org/linux/man-pages/man2/setns.2.html,
2019. [Online; accessed 30-March-2019].

“UNSHARE(2).” http://man7.org/linux/man-pages/man2/unshare.2.
html, 2019. [Online; accessed 30-March-2019].

“IOCTL_NS(2)” http://man7.org/linux/man-pages/man2/ioctl_ns.2.
html, 2019. [Online; accessed 30-March-2019].

J. Frazelle, “Two Objects not Namespaced by the Linux Kernel.” https://blog.
jessfraz.com/post/two-objects—not-namespaced-linux—-kernel/,
2017. [Online; accessed 22-June-2019].

“CGROUPS(7)” http://man7.org/linux/man-pages/man7/cgroups.7.
html, 2019. [Online; accessed 11-April-2019].

“Docker security.” https://docs.docker.com/engine/security/
security/. [Online; accessed 1-April-2019].

73


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

74

“CAPGET(2)” http://man7.org/linux/man-pages/man2/capset.2.
html, 2019. [Online; accessed 05-April-2019].

“PRCTL(2).” http://man7.org/linux/man-pages/man2/prctl.2.html,
2019. [Online; accessed 05-April-2019].

“SECCOMP(2).” http://man7.org/linux/man-pages/man2/seccomp.?2.
html, 2019. [Online; accessed 07-April-2019].

J. Corbet, “BPF: the universal in-kernel virtual machine.” https://lwn.net/
Articles/599755/, 2014. [Online; accessed 1-July-2019].

“Linux Security Module Usage.” https://www.kernel.org/doc/html/
latest/admin-guide/LSM/index.html, 2019. [Online; accessed 7-April-2019].

“AppArmor security profiles for Docker.” https://docs.docker.com/engine/
security/apparmor/. [Online; accessed 7-April-2019].

“PANDA User Manual” https://github.com/panda-re/panda/blob/
master/panda/docs/manual.md, 2019. [Online; accessed 11-April-2019].

B. W. Kernighan, The C Programming Language. Prentice Hall Professional Technical
Reference, 2nd ed., 1988.

“Plugin: osi” https://github.com/panda-re/panda/blob/master/
panda/plugins/osi/USAGE.md, 2018. [Online; accessed 12-April-2019].

“Plugin: osi_linux.” https://github.com/panda-re/panda/blob/
master/panda/plugins/osi_linux/USAGE.md, 2017. [Online; accessed
12-April-2019].

“Plugin: syscalls2.” https://github.com/panda-re/panda/blob/master/
panda/plugins/syscalls2/USAGE.md, 2019. [Online; accessed 12-April-2019].

“Plugin: taint2)” https://github.com/panda-re/panda/blob/master/
panda/plugins/taint2/USAGE.md, 2018. [Online; accessed 13-April-2019].

“SYSCALLS(2).” http://man7.org/linux/man-pages/man2/syscalls.2.
html, 2019. [Online; accessed 13-April-2019].

“SYSCALL(2)” http://man7.org/linux/man-pages/man2/syscall.2.
html, 2018. [Online; accessed 13-April-2019].

“GETPRIORITY (2)” http://man7.org/linux/man-pages/man2/
setpriority.2.html, 2017. [Online; accessed 13-April-2019].

“GETHOSTNAME(2).” http://man7.org/linux/man-pages/man2/
gethostname.2.html, 2017. [Online; accessed 13-April-2019].


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[79]

[80]

[81]

[82]

[83]

“UNAME(2).” http://man7.org/linux/man-pages/man2/uname.2.html,
2019. [Online; accessed 13-April-2019].

M. Jones, “User space memory access from the Linux kernel.” https://developer.
ibm.com/articles/l-kernel-memory-access/, 2010. [Online; accessed 14-
April-2019].

“NC(1).” https://manpages.debian.org/stretch/
netcat-traditional/nc.l.en.html, 2014. [Online; accessed 19-May-
2019].

“SYSTEMD(1).” http://man7.org/linux/man-pages/manl/init.1.
html, 2019. [Online; accessed 26-April-2019].

“NICE(2).” http://man7.org/linux/man-pages/man2/nice.2.html,

2017. [Online; accessed 24-June-2019].

75


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Threat Model
	Structure of the Work

	State of the Art
	Cross-Container and Cross-VM Side-Channel Attacks
	Taint Analysis
	System Calls Fuzzers

	Background
	Container Virtualization
	Technologies of Linux Containers
	Taint Analysis with PANDA
	Linux System Call Calling Conventions

	Methodology
	Tainting System Call Input Data
	Detection of Cross-Container Tainted Data
	Taint Labels
	Automation Strategies

	Implementation Details
	System Overview
	PANDA Version
	Retrieving the Currently Running Fuzzing Process
	Tainting System Call Registers and Kernel Reads
	Checking System Call Returns and Kernel Writes
	Dereferenced Pointer Patch
	Uniquification of Findings and System Call Skipping
	Optional Debugging Outputs and Debugging Aid
	Reported Finding Information
	Automation of Runs

	Evaluation and Results
	Test Setup
	Idealized Test Runs
	Early Fuzzing Attempts and False Positives
	Results

	Discussion and Future Work
	Conclusion
	List of Figures
	List of Algorithms
	Listings
	Abbreviations
	Bibliography

