Log 数据提取
使用Notepad++ 工具将log提取出来
提取常量
- 使用自定义的log开始标签
reward_constant_Log
,搜索所有的行
数据处理
- 将上述结果copy到新的文件中
提取出来的数据可以看到track_length
赛道总长是一个始终不变的量,17.709159380834848
m
waypoints
赛道定点也是一个始终不变的list
量,里面是119个tuple,实际上每一个tuple就是一个(x,y)点,对应的是赛道上的点。
- 通过Notepad++正则替换,将数据换行
这里细心看的话可以看到第一个点和最后一个点坐标是一样的。因此实际只有118个点,而不是119个点。
- 通过Excel 的文本分列功能将数据导入
- 给数据加一个列名
数据可视化
通过Excel 插入散点图可以将赛道点连接成曲线,根据这些赛点图很容易看出赛道就是`re:Invent 2018`
提取变量
- 使用自定义的log开始标签
reward_var_Log
,搜索所有的行
数据处理
- 将上述的数据copy到新的文件,然后再通过正则替换
替换之后的数据
- 数据导入到excel
使用Excel的分列功能将数据分列,然后添加列名
- 数据分析
通过steps
可知,每一次is_offtrack
为True
是表示本次回合结束,重新再开始计步,可以添加一个辅助列,表明哪些数据属于同一个回合。
数据可视化
所有数据可视化
将所有点都绘制到图中,可以看到training时,小车的尝试轨迹
选择部分点可视化
总结
通过分析log可以对整个赛道数据有一个全面的认知,可以根据数据计算弯道大小以及通过的最大速度,由于本人对Excel多线绘图这一块不是很精通,后面将会使用python的绘图库将赛道图、训练图和评估图放到一张图上进行比较,可以更具体看到一些差异,总结出更全面的规律。