(进阶)002 - AWS DeepRacer分析log

本文介绍了如何使用Notepad++工具提取和处理Log数据,通过正则表达式操作数据,并在Excel中进行数据可视化。作者分析了赛道常量如track_length和waypoints,以及变量数据如steps和is_offtrack,通过数据分列和散点图展示了训练过程中的轨迹变化。最后,提出了使用Python绘图库进一步分析和比较不同图层的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Log 数据提取

使用Notepad++ 工具将log提取出来

提取常量

  1. 使用自定义的log开始标签reward_constant_Log,搜索所有的行
    在这里插入图片描述
数据处理
  1. 将上述结果copy到新的文件中
    提取出来的数据可以看到 track_length 赛道总长是一个始终不变的量,17.709159380834848m
    在这里插入图片描述
    waypoints赛道定点也是一个始终不变的list量,里面是119个tuple,实际上每一个tuple就是一个(x,y)点,对应的是赛道上的点。
    在这里插入图片描述
  2. 通过Notepad++正则替换,将数据换行
    这里细心看的话可以看到第一个点和最后一个点坐标是一样的。因此实际只有118个点,而不是119个点。
    在这里插入图片描述
  3. 通过Excel 的文本分列功能将数据导入
    在这里插入图片描述
  4. 给数据加一个列名
    在这里插入图片描述
数据可视化
通过Excel 插入散点图可以将赛道点连接成曲线,根据这些赛点图很容易看出赛道就是`re:Invent 2018`

在这里插入图片描述

提取变量

  1. 使用自定义的log开始标签reward_var_Log,搜索所有的行
    在这里插入图片描述
数据处理
  1. 将上述的数据copy到新的文件,然后再通过正则替换
    在这里插入图片描述
    替换之后的数据
    在这里插入图片描述
  2. 数据导入到excel
    使用Excel的分列功能将数据分列,然后添加列名
    在这里插入图片描述
  3. 数据分析
    通过steps可知,每一次is_offtrackTrue是表示本次回合结束,重新再开始计步,可以添加一个辅助列,表明哪些数据属于同一个回合。
    在这里插入图片描述
数据可视化
所有数据可视化

将所有点都绘制到图中,可以看到training时,小车的尝试轨迹
在这里插入图片描述

选择部分点可视化

在这里插入图片描述

总结

通过分析log可以对整个赛道数据有一个全面的认知,可以根据数据计算弯道大小以及通过的最大速度,由于本人对Excel多线绘图这一块不是很精通,后面将会使用python的绘图库将赛道图、训练图和评估图放到一张图上进行比较,可以更具体看到一些差异,总结出更全面的规律。

资源下载链接

可视化Excel表

下载下来的原始log压缩包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rambo.Fan

码字不易,打赏有动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值