
ADAPT IVE HASHING
Faster Hash Functions with Fewer Collisions*

GáborMelis
melisgl@google.com

Google DeepMind

2024-05-14

* . . .Especially in Certain Situations

https://quotenil.com/about-me.html

Outline

• Motivation: performance in theory and practice

• The general idea of adaptive hashing

• Adaptive eq hashing

• Adaptive equal hashing

• Wrapping up

https://en.wikipedia.org/wiki/Service_stripe

Motivation

Hash tables are the most common non-trivial data structure.

• up to 50% of the time in a complex database query

• 2% of all Google CPU usage

Uni
verse of keys

Actu
al keys

hash(
k1) m

od m

m buckets (chaining)︷ ︸︸ ︷
k1 v1 k4 v4

k5 v5 k2 v2 k6 v6

k3 v3

k1k2
k3 k4

k5
k6

Motivation

Hash tables are the most common non-trivial data structure.

• up to 50% of the time in a complex database query

• 2% of all Google CPU usage

Uni
verse of keys

Actu
al keys

hash(
k1) m

od m

m buckets (chaining)︷ ︸︸ ︷
k1 v1 k4 v4

k5 v5 k2 v2 k6 v6

k3 v3

k1k2
k3 k4

k5
k6

Motivation: Cost and Regret in Theory

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:
0 2 0 0 0 3 0 1 cost = 1

2+3+1
(2 1+2

2 + 3 1+3
2 + 1 1+12

) ≈ 1.66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:
0 1 1 1 1 0 1 1 cost = 1

The regret is the cost minus the minimum achievable cost.

A uniform hash assigns each key to a bucket with the same probability.
0.5 expected regret at load factor 1 (eaten by O()).

✠ There is something to gain even in theory.

Motivation: Cost and Regret in Theory

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:
0 2 0 0 0 3 0 1 cost = 1

2+3+1
(2 1+2

2 + 3 1+3
2 + 1 1+12

) ≈ 1.66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:
0 1 1 1 1 0 1 1 cost = 1

The regret is the cost minus the minimum achievable cost.

A uniform hash assigns each key to a bucket with the same probability.
0.5 expected regret at load factor 1 (eaten by O()).

✠ There is something to gain even in theory.

Motivation: Cost and Regret in Theory

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:
0 2 0 0 0 3 0 1 cost = 1

2+3+1
(2 1+2

2 + 3 1+3
2 + 1 1+12

) ≈ 1.66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:
0 1 1 1 1 0 1 1 cost = 1

The regret is the cost minus the minimum achievable cost.

A uniform hash assigns each key to a bucket with the same probability.
0.5 expected regret at load factor 1 (eaten by O()).

✠ There is something to gain even in theory.

Motivation: Cost and Regret in Theory

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:
0 2 0 0 0 3 0 1 cost = 1

2+3+1
(2 1+2

2 + 3 1+3
2 + 1 1+12

) ≈ 1.66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:
0 1 1 1 1 0 1 1 cost = 1

The regret is the cost minus the minimum achievable cost.

A uniform hash assigns each key to a bucket with the same probability.
0.5 expected regret at load factor 1 (eaten by O()).

✠ There is something to gain even in theory.

Motivation: Setup for the Reality Check

The theoretical cost model is bad (duh).

Case-study on Integer Hashing:
• Keys: machine words (e.g. integer, pointer)
• Implementation: Common Lisp (SBCL)
• Comparison function: eq (like == in Java or CMP in assembly)
• Hash function: integer value / address→ hash value

We compare
• Murmur3 mixer: a general-purpose hash function (∼ Uniform Hash)
• Prefuzz: SBCL’s own hand-crafted eq hash.

Motivation: Hash Function SpeedMatters

Eq hash table performance
vs the number of keys with
Murmur and Prefuzz.

Keys: random existing symbol
objects

Regret: Sameish. Close to a
Uniform Hash.

Put, Get: Prefuzz is 5–15%
faster (to compute).

21 25 29 213
0

0.2

0.4

0.6

#keys

re
gr
et

21 25 29 213

25

26

27

ns
/p

ut

21 25 29 213
23

25

27

ns
/g

et

Motivation: Cache-friendlinessMatters

Keys: integer arithmetic pro-
gressions with increment 1 (e.g.
1, 2, 3, . . .).

Regret: Is Prefuzz optimized
for small hash tables?

Put: Prefuzz is 20–75% faster
due to local collisions.

Get: Randomized query order
⇒ smaller gains

21 27 213 219 225
0

0.2

0.4

0.6

re
gr
et

21 27 213 219 225

25

26

27

ns
/p

ut

21 27 213 219 225
23

25

27

ns
/g

et

Motivation: Not Crashing and BurningMatters

Keys: single float arithmetic
progressions (e.g. 1.0, 2.0, 3.0,
. . .)

Prefuzz breaks.

21 27 213 219 225

100

102

re
gr
et

(lo
g)

21 27 213 219 225

26

28

210

ns
/p

ut

21 27 213 219 225

25

210

ns
/g

et

Motivation: A CompromiseWaiting toHappen

General-purpose hash functions (e.g. Murmur):
• robust (work with any key distribution)
• wasteful (do computation that doesn’t improve performance)
• suboptimal (non-zero regret, about 0.5)
• cache-unfriendly

Hand-crafted hash functions (e.g. Prefuzz) are the opposite:
• fragile (fail outside the intended key distribution)
• frugal (perform minimal computation)
• can be optimal (zero regret)
• can be cache-friendly

Adaptive Hashing

Won’t do:
• Perfect Hashing: static key set, offline, slow
• Dynamic Perfect Hashing: much more memory

Will do:
• Adapt the hash function to the current set of keys
• online
• to be faster
• with no change to the hash table API.

Can do fast enough?

https://www.theguardian.com/lifeandstyle/wordofmouth/2012/oct/18/how-to-cook-perfect-hash-browns

Adaptive Hashing: Skeleton

Three low-overhead triggers for
adaptation in put():
• Max chain length
• Collision count at rehash
• Hash table size

function put(key, value)
bucket← h(key) mod m
chain_length← 0
for k← next key in bucket do

if compare(key, k) then
value of k← value
return

chain_length← chain_length + 1

if chain_length too high then
h← safer_hash_function(h)
bucket← h(key) mod m

if hash table is full then
double m and increase storage
h← adapt_and_rehash(h,m)
if h was changed then
bucket← h(key) mod m

add (key, value) to bucket

Adaptive Hashing: Skeleton

Three low-overhead triggers for
adaptation in put():
• Max chain length
• Collision count at rehash
• Hash table size

function put(key, value)
bucket← h(key) mod m
chain_length← 0
for k← next key in bucket do

if compare(key, k) then
value of k← value
return

chain_length← chain_length + 1
if chain_length too high then

h← safer_hash_function(h)
bucket← h(key) mod m

if hash table is full then
double m and increase storage
h← adapt_and_rehash(h,m)
if h was changed then
bucket← h(key) mod m

add (key, value) to bucket

Adaptive Hashing: Skeleton

Three low-overhead triggers for
adaptation in put():
• Max chain length
• Collision count at rehash
• Hash table size

function put(key, value)
bucket← h(key) mod m
chain_length← 0
for k← next key in bucket do

if compare(key, k) then
value of k← value
return

chain_length← chain_length + 1
if chain_length too high then

h← safer_hash_function(h)
bucket← h(key) mod m

if hash table is full then
double m and increase storage
h← adapt_and_rehash(h,m)
if h was changed then
bucket← h(key) mod m

add (key, value) to bucket

Adaptive Eq

More concretely, for Eq hashing:

1. Init to Constant hash: linear search in a vector internally

2. → Pointer-Shift above 32 keys

3. → Prefuzz if doing badly

4. → Murmur similarly

https://en.wikipedia.org/wiki/Jenkins_hash_function

Adaptive Eq: Page-basedMemory Allocation

Memory addresses of objects are unique.

Allocators grab a contiguous memory range from the OS (expensive).

Then, they cram many small objects into these “pages”.

Most allocations are just a pointer bump (cheap).

✠ Addresses resemble arithmetic progressions within pages.

Adaptive Eq: The Arithmetic Hash

Arithmetic progressions with odd increments are perfect hashes in power-of-2
hash tables (coprimes).

Let s be the number of low bits which are the same in all keys.

✠ k→ k ≫ s is a perfect hash for all arithmetic progressions.

Computing s is cheap:

function count_common_prefix_bits(k1, . . . , kn)
mask← 0 ⊲ Changed bits detected so far
for i← 2 to n do
mask← mask ∨ (k1 ⊕ ki) ⊲ One OR and one XOR instruction

return count_leading_zero_bits(¬mask) ⊲ A single LZCNT instruction

Adaptive Eq: The Arithmetic Hash

Arithmetic progressions with odd increments are perfect hashes in power-of-2
hash tables (coprimes).

Let s be the number of low bits which are the same in all keys.

✠ k→ k ≫ s is a perfect hash for all arithmetic progressions.

Computing s is cheap:

function count_common_prefix_bits(k1, . . . , kn)
mask← 0 ⊲ Changed bits detected so far
for i← 2 to n do
mask← mask ∨ (k1 ⊕ ki) ⊲ One OR and one XOR instruction

return count_leading_zero_bits(¬mask) ⊲ A single LZCNT instruction

Adaptive Eq: The Pointer-Mix Hash

Multiple pages: less regular allocation patterns

Keep the low bits intact, and mix in the page:

pointer_mix(k) = k ≫ s ⊕ uniform_hash(k ≫ n_page_bits)

For random subsets of arithmetic progressions, Pointer-Mix
• is a Perfect Hash with all keys on a single page;
• behaves like a Uniform Hash with more pages.

Adaptive Eq: The Pointer-Shift Hash

Pointer-Mix is easy to analyse but slow due to uniform_hash().

Mix in the page faster→ Pointer-Shift:

address >> s + /* Remove the constant low bits */
address >> n_page_bits /* Mix in page address */

Extremely aggressive, but it has Prefuzz as a safety net.

Adaptive Eq: The Prefuzz Hash

Stock SBCL’s eq hash is Prefuzz:

address ^ 0xdeadbeef + /* Destroy some regular patterns */
address >> 1 + /* Mix the low bits a bit */
address >> 4 +
address >> 13 +
address >> 21 /* Ignore the high bits */

So that’s why it worked well until it didn’t: it punts on the high bits.

Plays it safer than Adaptive but still needs Murmur as a safety net.

✠ Similar to Pointer-Shift but does not depend on the other keys!

Adaptive Eq: Faster Hashing

Keys: random existing symbol
objects (revisited)

Regret: Sameish. Not plotting
the Constant phase.

Put: Big win for Adaptive in
the Constant phase.

Get: A few percent faster than
Prefuzz, which is already better
than Murmur due to being a
faster hash function.

21 25 29 213
0

0.2

0.4

0.6

re
gr
et

21 25 29 213

25

26

27

ns
/p

ut

21 25 29 213
23

25

27

ns
/g

et

Adaptive Eq: Less Regret

Keys: integer arithmetic pro-
gression (revisited)

Regret: Adaptive is a perfect
hash.

Put: 50% over Murmur, and
over Prefuzz in the Constant
hash phase

Get: Up to 50% faster

21 27 213 219 225
0

0.2

0.4

0.6

re
gr
et

21 27 213 219 225

25

26

27

ns
/p

ut

21 27 213 219 225
23

25

27

ns
/g

et

Adaptive Eq: More Robustness

Keys: single float arithmetic
progressions (revisited)

Adaptive takes advantage of the
regularity. When its guessed
shift becomes incorrect, it
falls back to Prefuzz (a bad
idea) and then immediately to
Murmur.

21 27 213 219 225
1092

100

102

re
gr
et

(lo
g)

21 27 213 219 225

25

26

27

ns
/p

ut

21 27 213 219 225
23

25

27

ns
/g

et

Adaptive Eq: Made in Heaven

F
A

S
T
E
R

T H A N A H A N D - C R
A
F
T
E
D

u
A

S
R

O
B

U S T
A S A U N I F O R M

H
A

S
H

U

Adaptive
Hash

Adaptive Equal Hashing

For composite keys, running the hash function is the main cost.

• For string keys, hash only the first and last 2 characters.

• For list keys, only hash the first 4 elements.

• Double the limit if hashes are not distributed nicely.

Adaptive Equal: String Keys

Equal hash table performance
with Adaptive and SBCL.

Keys: existing strings

Regret: sameish

Put, Get: Adaptive is 30–50%
faster until the truncation limit
is increased beyond the length
of most keys to avoid collisions.

21 25 29 213
0

0.2

0.4

re
gr
et

21 25 29 213

26

27

ns
/p

ut

21 25 29 213

26

27

ns
/g

et

Macrobenchmarks

Verify that the gains survive the transition to macrobenchmarks (code
complexity, cache pressure).

Benchmarks:

1. compile and load a set of libraries;

2. run the tests of the same set of libraries;

3. run each test file in SBCL’s tests/ directory.

All light on hash table ops, so there is not much to gain.

✠ The relative gains are similar to those in microbenchmarks.

Limitations

• Cheap, bad proxies for performance

Collision count and max chain length: loose lower and upper bounds

• Hard to implement without upsetting performance gods

• Requires understanding the key distribution

E.g. the memory allocator for Pointer-Shift

Conclusions

Gains:
• Using a general-purpose hash? – Much common-case performance
• Using a weak hash? – Robustness and some performance

Lessons:
• Hash functions must depend on the actual keys for best performance.
• Hash functions can be adapted online.
• Lots of possibilities (e.g. faster DoS-resistant hashing).

✠ Better common-case performance and more robustness is possible.

Thanks

• Christophe Rhodes

• Miloš Stanojević

• Andrew Senior

• Paul-Virak Khuong

• The Reviewers

Code: https://github.com/melisgl/sbcl/tree/adaptive-hash

Paper: https://zenodo.org/doi/10.5281/zenodo.10991321

https://pvk.ca/
https://quotenil.com/about-me.html
https://github.com/melisgl/sbcl/tree/adaptive-hash
https://zenodo.org/doi/10.5281/zenodo.10991321

