ADAPTIVE HASHING

FasTER HAasH FuNcTIiONS WiITH FEWER COLLISIONS’

melisgl@google.com

Google DeepMind

2024-05-14

...ESPECIALLY IN CERTAIN SITUATIONS

https://quotenil.com/about-me.html

OUTLINE

e Motivation: performance in theory and practice
o The general idea of adaptive hashing

e Adaptive eq hashing

o Adaptive equal hashing

e Wrapping up

https://en.wikipedia.org/wiki/Service_stripe

MOTIVATION
Hash tables are the most common non-trivial data structure.
» up to 50% of the time in a complex database query

* 2% of all Google CPU usage

MoTIvaTION
Hash tables are the most common non-trivial data structure.

» up to 50% of the time in a complex database query

* 2% of all Google CPU usage

m buckets (chaining)

ESm

—)‘ks‘Vs}—){kz‘VZ}—){kﬁ‘Vﬁ‘
ks [vs]

MoTIvATION: COST AND REGRET IN THEORY

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:

[o]2]o]o]o]3]0]1] cost = 7= (2152 + 312 + 1) ~ 1,66

MoTIvATION: COST AND REGRET IN THEORY

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:

[o]2]o]o]o]3]0]1] cost = 7= (2152 + 312 + 1) ~ 1,66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:

[oft]1[1]1]of1]1] cost = 1

MoTIvATION: COST AND REGRET IN THEORY

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:

[o]2]o]o]o]3]0]1] cost = 7= (2152 + 312 + 1) ~ 1,66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:

o 1]1]1]1]of1]1] cost = 1

The regret is the cost minus the minimum achievable cost.

MoTIvATION: COST AND REGRET IN THEORY

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:

[o]2]o]o]o]3]0]1] cost = 7= (2152 + 312 + 1) ~ 1,66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:

[oft]1[1]1]of1]1] cost = 1

The regret is the cost minus the minimum achievable cost.

A uniform hash assigns each key to a bucket with the same probability.
0.5 expected regret at load factor 1 (eaten by O()).

"I There is something to gain even in theory.

MOTIVATION: SETUP FOR THE REALITY CHECK

The theoretical cost model is bad (duh).

Case-study on Integer Hashing:
¢ Keys: machine words (e.g. integer, pointer)
¢ Implementation: Common Lisp (SBCL)
» Comparison function: eq (like == in Java or CMP in assembly)

e Hash function: integer value / address — hash value

We compare
e Murmur3 mixer: a general-purpose hash function (~ Uniform Hash)

o Prefuzz: SBCL’s own hand-crafted eq hash.

MoTivaTioN: HasH FUNCTION SPEED MATTERS

T
06|
a
& 04 S A LA A A A
. A : 3
Eq hash table performance & AANAN ,~’!/,-’:/ L ,-';jf'i';:i»
. 0.2 |- 4 4 A A A A
vs the number of keys with S
Murmur and Prefuzz. 0 : ‘ L
ol 25 29 213 #keys
T T T T
Keys: random existing symbol 2 -
. -
=
objects 3 '
~ R s [
Regret: Sameish. Close t 2 TR
egret: Sameish. Close to a
Uniform Hash. \ \ L \
21 25 29 213
T T T T
. 7 |
Put, Get: Prefuzz is 5-15% 2

faster (to compute).

ns / get

P S
et e
Lol A

3 |
2 ! ! !

21 25 29 213

MoTivATION: CACHE-FRIENDLINESS MATTERS

Keys: integer arithmetic pro-
gressions with increment 1 (e.g.
1,2,3,...).

Regret: Is Prefuzz optimized
for small hash tables?

Put: Prefuzz is 20-75% faster
due to local collisions.

Get: Randomized query order
= smaller gains

ns / put

ns / get

AN
' ’\\I\l\

A

N
b LR
A W

!
RN
| |

27

213 219

MoTivaTION: NOT CRASHING AND BURNING MATTERS

Keys: single float arithmetic
progressions (e.g. 1.0, 2.0, 3.0,
)

Prefuzz breaks.

regret (log)

ns / put

ns/ get

102

MoTivaTiON: A COMPROMISE WAITING TO HAPPEN

General-purpose hash functions (e.g. Murmur):
« robust (work with any key distribution)
» wasteful (do computation that doesn’t improve performance)
¢ suboptimal (non-zero regret, about 0.5)

e cache-unfriendly

Hand-crafted hash functions (e.g. Prefuzz) are the opposite:
* fragile (fail outside the intended key distribution)
¢ frugal (perform minimal computation)
 can be optimal (zero regret)

 can be cache-friendly

ADAPTIVE HASHING

Won’t do:
» Perfect Hashing: static key set, offline, slow

e Dynamic Perfect Hashing: much more memory

Will do:
« Adapt the hash function to the current set of keys
¢ online
* to be faster

» with no change to the hash table API.

Can do fast enough?

https://www.theguardian.com/lifeandstyle/wordofmouth/2012/oct/18/how-to-cook-perfect-hash-browns

ADAPTIVE HASHING: SKELETON

function put(key, value)
bucket « h(key) mod m
chain_length « 0
for k <« next key in bucket do
if compare(key, k) then
value of k « value
return
chain_length <« chain_length +1

Three low-overhead triggers for
adaptation in put():

e Max chain length
» Collision count at rehash

* Hash table size

ADAPTIVE HASHING: SKELETON

function put(key, value)
bucket « h(key) mod m
chain_length « 0
for k <« next key in bucket do
if compare(key, k) then
value of k « value
return
chain_length <« chain_length +1

Three low-overhead triggers for
adaptation in put():
* Max chain length if chain_length too high then

« Collision count at rehash h « safer_hash_function(h)

. bucket « h(key) mod m
* Hash table size

ADAPTIVE HASHING: SKELETON

function put(key, value)
bucket « h(key) mod m
chain_length < 0
for k <« next key in bucket do
if compare(key, k) then
value of k « value
return
chain_length <« chain_length +1

Three low-overhead triggers for
adaptation in put():
* Max chain length if chain_length too high then
« Collision count at rehash h « safer_hash_function(h)
bucket « h(key) mod m
if hash table is full then
double m and increase storage
h « adapt_and_rehash(h,m)
if h was changed then
bucket « h(key) mod m

add (key, value) to bucket

* Hash table size

ApArTIVE EQ

More concretely, for Eq hashing:
1. Init to Constant hash: linear search in a vector internally
2. — Pointer-Shift above 32 keys
3. — Prefuzz if doing badly

4. — Murmur similarly

https://en.wikipedia.org/wiki/Jenkins_hash_function

ADAPTIVE EQ: PAGE-BASED MEMORY ALLOCATION

Memory addresses of objects are unique.

Allocators grab a contiguous memory range from the OS (expensive).
Then, they cram many small objects into these “pages”.

Most allocations are just a pointer bump (cheap).

"I Addresses resemble arithmetic progressions within pages.

ADAPTIVE EQ: THE ARITHMETIC HASH
Arithmetic progressions with odd increments are perfect hashes in power-of-2
hash tables (coprimes).
Let s be the number of low bits which are the same in all keys.

"l k — k > s is a perfect hash for all arithmetic progressions.

ADAPTIVE EQ: THE ARITHMETIC HASH

Arithmetic progressions with odd increments are perfect hashes in power-of-2
hash tables (coprimes).

Let s be the number of low bits which are the same in all keys.

"l k — k > s is a perfect hash for all arithmetic progressions.

Computing s is cheap:

function count_common_prefix_bits(ky, .. ., k)

mask «— 0 > Changed bits detected so far
fori — 2tondo
mask «— mask Vv (k; ® k;) > One OR and one XO0R instruction

return count_leading zero_bits(—mask) > A single LZCNT instruction

ADAPTIVE EQ: THE POINTER-M1x HasH

Multiple pages: less regular allocation patterns

Keep the low bits intact, and mix in the page:

pointer_mix(k) = k > s @ uniform_hash(k > n_page bits)

For random subsets of arithmetic progressions, Pointer-Mix
« is a Perfect Hash with all keys on a single page;

e behaves like a Uniform Hash with more pages.

ADAPTIVE EQ: THE POINTER-SHIFT HAsH

Pointer-Mix is easy to analyse but slow due to uniform_hash().
Mix in the page faster — Pointer-Shift:

address >> s + /* Remove the constant low bits */
address >> n_page_bits /* Mix in page address */

Extremely aggressive, but it has Prefuzz as a safety net.

ADpAPTIVE EQ: THE PrREFUZZ HASH

Stock SBCL’s eq hash is Prefuzz:

address
address
address
address

address

~ Oxdeadbeef + /* Destroy some regular patterns */

>>
>>
>>
>>

1+ /* Mix the low bits a bit */
4 +

13 +

21 /* Ignore the high bits */

So that’s why it worked well until it didn’t: it punts on the high bits.

Plays it safer than Adaptive but still needs Murmur as a safety net.

I« Similar to Pointer-Shift but does not depend on the other keys!

ADAPTIVE EQ: FASTER HASHING

Keys: random existing symbol
objects (revisited)

Regret: Sameish. Not plotting

the Constant phase.

Put: Big win for Adaptive in
the Constant phase.

ns / put

Get: A few percent faster than

Prefuzz, which is already better

than Murmur due to being a g

faster hash function. >
2

ADAPTIVE EQ: LEss REGRET

Keys: integer arithmetic pro-
gression (revisited)

Regret: Adaptive is a perfect ‘ ‘ ‘ N
hash.

Put: 50% over Murmur, and
over Prefuzz in the Constant
hash phase

Get: Up to 50% faster

ADAPTIVE EQ: MORE ROBUSTNESS

,_.
o,
T
T
\
\
|

regret (log)
g
T
\

_

<
8
T

Keys: single float arithmetic ‘
progressions (revisited)

Adaptive takes advantage of the
regularity. When its guessed
shift becomes incorrect, it

falls back to Prefuzz (a bad
idea) and then immediately to
Murmur.

ADAPTIVE EQ: MADE IN HEAVEN

ADAPTIVE EQUAL HASHING

For composite keys, running the hash function is the main cost.
« For string keys, hash only the first and last 2 characters.
« For list keys, only hash the first 4 elements.

e Double the limit if hashes are not distributed nicely.

ADAPTIVE EQuUAL: STRING KEYS

regret

Equal hash table performance
with Adaptive and SBCL.

Keys: existing strings ‘ ‘ ‘ ‘

N
7[>~ SIS WM ~
27 = S~ 1! TN SN

Regret: sameish

ns / put

Put, Get: Adaptive is 30-50% 2

faster until the truncation limit 2! 25 29 21

is increased beyond the length ‘ ‘ ‘ ‘
of most keys to avoid collisions.

ns/ get

MACROBENCHMARKS

Verify that the gains survive the transition to macrobenchmarks (code
complexity, cache pressure).

Benchmarks:
1. compile and load a set of libraries;
2. run the tests of the same set of libraries;

3. run each test file in SBCL’s tests/ directory.

All light on hash table ops, so there is not much to gain.

I The relative gains are similar to those in microbenchmarks.

LIMITATIONS

e Cheap, bad proxies for performance

Collision count and max chain length: loose lower and upper bounds
e Hard to implement without upsetting performance gods
e Requires understanding the key distribution

E.g. the memory allocator for Pointer-Shift

CONCLUSIONS

Gains:
e Using a general-purpose hash? — Much common-case performance

» Using a weak hash? — Robustness and some performance

Lessons:
e Hash functions must depend on the actual keys for best performance.
e Hash functions can be adapted online.

 Lots of possibilities (e.g. faster DoS-resistant hashing).

"I Better common-case performance and more robustness is possible.

THANKS

Christophe Rhodes
o Milo$ StanojeVié rﬁ
e Andrew Senior

Paul-Virak Khuong

o The Reviewers

Code: https://github.com/melisgl/sbcl/tree/adaptive-hash

Paper: https://zenodo.org/doi/10.5281/zenodo.10991321

https://pvk.ca/
https://quotenil.com/about-me.html
https://github.com/melisgl/sbcl/tree/adaptive-hash
https://zenodo.org/doi/10.5281/zenodo.10991321

