
ADAPT IVE HASHING
Faster Hash Functions with Fewer Collisions*

GáborMelis
melisgl@google.com

Google DeepMind

2024-05-14

* . . .Especially in Certain Situations

https://quotenil.com/about-me.html


Outline

• Motivation: performance in theory and practice

• The general idea of adaptive hashing

• Adaptive eq hashing

• Adaptive equal hashing

• Wrapping up

https://en.wikipedia.org/wiki/Service_stripe


Motivation

Hash tables are the most common non-trivial data structure.

• up to 50% of the time in a complex database query

• 2% of all Google CPU usage
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Motivation: Cost and Regret in Theory

The cost of hashes is the expected number of comparisons for lookups.
Computed from bucket counts:
0 2 0 0 0 3 0 1 cost = 1

2+3+1
(2 1+2

2 + 3 1+3
2 + 1 1+12

) ≈ 1.66

A perfect hash fills buckets as evenly as possible.
They have minimal cost:
0 1 1 1 1 0 1 1 cost = 1

The regret is the cost minus the minimum achievable cost.

A uniform hash assigns each key to a bucket with the same probability.
0.5 expected regret at load factor 1 (eaten by O()).

✠ There is something to gain even in theory.
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Motivation: Setup for the Reality Check

The theoretical cost model is bad (duh).

Case-study on Integer Hashing:
• Keys: machine words (e.g. integer, pointer)
• Implementation: Common Lisp (SBCL)
• Comparison function: eq (like == in Java or CMP in assembly)
• Hash function: integer value / address→ hash value

We compare
• Murmur3 mixer: a general-purpose hash function (∼ Uniform Hash)
• Prefuzz: SBCL’s own hand-crafted eq hash.



Motivation: Hash Function SpeedMatters

Eq hash table performance
vs the number of keys with
Murmur and Prefuzz.

Keys: random existing symbol
objects

Regret: Sameish. Close to a
Uniform Hash.

Put, Get: Prefuzz is 5–15%
faster (to compute).
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Motivation: Cache-friendlinessMatters

Keys: integer arithmetic pro-
gressions with increment 1 (e.g.
1, 2, 3, . . . ).

Regret: Is Prefuzz optimized
for small hash tables?

Put: Prefuzz is 20–75% faster
due to local collisions.

Get: Randomized query order
⇒ smaller gains
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Motivation: Not Crashing and BurningMatters

Keys: single float arithmetic
progressions (e.g. 1.0, 2.0, 3.0,
. . . )

Prefuzz breaks.
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Motivation: A CompromiseWaiting toHappen

General-purpose hash functions (e.g. Murmur):
• robust (work with any key distribution)
• wasteful (do computation that doesn’t improve performance)
• suboptimal (non-zero regret, about 0.5)
• cache-unfriendly

Hand-crafted hash functions (e.g. Prefuzz) are the opposite:
• fragile (fail outside the intended key distribution)
• frugal (perform minimal computation)
• can be optimal (zero regret)
• can be cache-friendly



Adaptive Hashing

Won’t do:
• Perfect Hashing: static key set, offline, slow
• Dynamic Perfect Hashing: much more memory

Will do:
• Adapt the hash function to the current set of keys
• online
• to be faster
• with no change to the hash table API.

Can do fast enough?

https://www.theguardian.com/lifeandstyle/wordofmouth/2012/oct/18/how-to-cook-perfect-hash-browns


Adaptive Hashing: Skeleton

Three low-overhead triggers for
adaptation in put():
• Max chain length
• Collision count at rehash
• Hash table size

function put(key, value)
bucket← h(key) mod m
chain_length← 0
for k← next key in bucket do

if compare(key, k) then
value of k← value
return

chain_length← chain_length + 1

if chain_length too high then
h← safer_hash_function(h)
bucket← h(key) mod m

if hash table is full then
double m and increase storage
h← adapt_and_rehash(h,m)
if h was changed then
bucket← h(key) mod m

add (key, value) to bucket
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Adaptive Eq

More concretely, for Eq hashing:

1. Init to Constant hash: linear search in a vector internally

2. → Pointer-Shift above 32 keys

3. → Prefuzz if doing badly

4. → Murmur similarly

https://en.wikipedia.org/wiki/Jenkins_hash_function


Adaptive Eq: Page-basedMemory Allocation

Memory addresses of objects are unique.

Allocators grab a contiguous memory range from the OS (expensive).

Then, they cram many small objects into these “pages”.

Most allocations are just a pointer bump (cheap).

✠ Addresses resemble arithmetic progressions within pages.



Adaptive Eq: The Arithmetic Hash

Arithmetic progressions with odd increments are perfect hashes in power-of-2
hash tables (coprimes).

Let s be the number of low bits which are the same in all keys.

✠ k→ k ≫ s is a perfect hash for all arithmetic progressions.

Computing s is cheap:

function count_common_prefix_bits(k1, . . . , kn)
mask← 0 ⊲ Changed bits detected so far
for i← 2 to n do
mask← mask ∨ (k1 ⊕ ki) ⊲ One OR and one XOR instruction

return count_leading_zero_bits(¬mask) ⊲ A single LZCNT instruction
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Adaptive Eq: The Pointer-Mix Hash

Multiple pages: less regular allocation patterns

Keep the low bits intact, and mix in the page:

pointer_mix(k) = k ≫ s ⊕ uniform_hash(k ≫ n_page_bits)

For random subsets of arithmetic progressions, Pointer-Mix
• is a Perfect Hash with all keys on a single page;
• behaves like a Uniform Hash with more pages.



Adaptive Eq: The Pointer-Shift Hash

Pointer-Mix is easy to analyse but slow due to uniform_hash().

Mix in the page faster→ Pointer-Shift:

address >> s + /* Remove the constant low bits */
address >> n_page_bits /* Mix in page address */

Extremely aggressive, but it has Prefuzz as a safety net.



Adaptive Eq: The Prefuzz Hash

Stock SBCL’s eq hash is Prefuzz:

address ^ 0xdeadbeef + /* Destroy some regular patterns */
address >> 1 + /* Mix the low bits a bit */
address >> 4 +
address >> 13 +
address >> 21 /* Ignore the high bits */

So that’s why it worked well until it didn’t: it punts on the high bits.

Plays it safer than Adaptive but still needs Murmur as a safety net.

✠ Similar to Pointer-Shift but does not depend on the other keys!



Adaptive Eq: Faster Hashing

Keys: random existing symbol
objects (revisited)

Regret: Sameish. Not plotting
the Constant phase.

Put: Big win for Adaptive in
the Constant phase.

Get: A few percent faster than
Prefuzz, which is already better
than Murmur due to being a
faster hash function.
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Adaptive Eq: Less Regret

Keys: integer arithmetic pro-
gression (revisited)

Regret: Adaptive is a perfect
hash.

Put: 50% over Murmur, and
over Prefuzz in the Constant
hash phase

Get: Up to 50% faster
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Adaptive Eq: More Robustness

Keys: single float arithmetic
progressions (revisited)

Adaptive takes advantage of the
regularity. When its guessed
shift becomes incorrect, it
falls back to Prefuzz (a bad
idea) and then immediately to
Murmur.
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Adaptive Eq: Made in Heaven
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Adaptive Equal Hashing

For composite keys, running the hash function is the main cost.

• For string keys, hash only the first and last 2 characters.

• For list keys, only hash the first 4 elements.

• Double the limit if hashes are not distributed nicely.



Adaptive Equal: String Keys

Equal hash table performance
with Adaptive and SBCL.

Keys: existing strings

Regret: sameish

Put, Get: Adaptive is 30–50%
faster until the truncation limit
is increased beyond the length
of most keys to avoid collisions.
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Macrobenchmarks

Verify that the gains survive the transition to macrobenchmarks (code
complexity, cache pressure).

Benchmarks:

1. compile and load a set of libraries;

2. run the tests of the same set of libraries;

3. run each test file in SBCL’s tests/ directory.

All light on hash table ops, so there is not much to gain.

✠ The relative gains are similar to those in microbenchmarks.



Limitations

• Cheap, bad proxies for performance

Collision count and max chain length: loose lower and upper bounds

• Hard to implement without upsetting performance gods

• Requires understanding the key distribution

E.g. the memory allocator for Pointer-Shift



Conclusions

Gains:
• Using a general-purpose hash? – Much common-case performance
• Using a weak hash? – Robustness and some performance

Lessons:
• Hash functions must depend on the actual keys for best performance.
• Hash functions can be adapted online.
• Lots of possibilities (e.g. faster DoS-resistant hashing).

✠ Better common-case performance and more robustness is possible.
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