【人工智能】MindSpore Hub

目录

前言

一、什么是MindSpore Hub

1.简单介绍

2.MindSpore Hub包含功能

3.MindSpore Hub使用场景

二、安装MindSpore Hub

1.确认系统环境信息

2.安装

 3.下载源码

 4.进行验证

三、加载模型

1.介绍

2.推理验证

3.迁移学习

四、模型发布


前言

MindSpore着重提升易用性并降低AI开发者的开发门槛,MindSpore原生适应每个场景包括端、边缘和云,并能够在按需协同的基础上,通过实现AI算法即代码,使开发态变得更加友好,显著减少模型开发时间,降低模型开发门槛。通过MindSpore自身的技术创新及MindSpore与华为昇腾AI处理器的协同优化,实现了运行态的高效,大大提高了计算性能;MindSpore也支持GPU、CPU等其它处理器。

一、什么是MindSpore Hub

1.简单介绍

官方版本的预训练模型中心库---MindSpore Hub

 mindspore_hub 是一个Python库

下载网址:点击跳转

2.MindSpore Hub包含功能

  • 即插即用的模型加载

  • 简单易用的迁移学习

import mindspore
import mindspore_hub as mshub
from mindspore import set_context, GRAPH_MODE

set_context(mode=GRAPH_MODE,
            device_target="Ascend",
            device_id=0)

model = "mindspore/1.6/googlenet_cifar10"

# Initialize the number of classes based on the pre-trained model.
network = mshub.load(model, num_classes=10)
network.set_train(False)

# ...

3.MindSpore Hub使用场景

· 推理验证:mindspore_hub.load用于加载预训练模型,可以实现一行代码完成模型的加载。

· 迁移学习:通过mindspore_hub.load完成模型加载后,可以增加一个额外的参数项只加载神经网络的特征提取部分,这样就能很容易地在之后增加一些新的层进行迁移学习。

· 发布模型:可以将自己训练好的模型按照指定的步骤发布到MindSpore Hub中,以供其他用户进行下载和使用。

二、安装MindSpore Hub

1.确认系统环境信息

  • 硬件平台支持Ascend、GPU和CPU。

  • 确认安装Python 3.7.5版本。

  • MindSpore Hub与MindSpore的版本需保持一致。

  • MindSpore Hub支持使用x86 64位或ARM 64位架构的Linux发行版系统。

评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

跳楼梯企鹅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值