目录
前言
MindSpore着重提升易用性并降低AI开发者的开发门槛,MindSpore原生适应每个场景包括端、边缘和云,并能够在按需协同的基础上,通过实现AI算法即代码,使开发态变得更加友好,显著减少模型开发时间,降低模型开发门槛。通过MindSpore自身的技术创新及MindSpore与华为昇腾AI处理器的协同优化,实现了运行态的高效,大大提高了计算性能;MindSpore也支持GPU、CPU等其它处理器。
一、什么是MindSpore Hub
1.简单介绍
官方版本的预训练模型中心库---MindSpore Hub
mindspore_hub 是一个Python库
下载网址:点击跳转
2.MindSpore Hub包含功能
-
即插即用的模型加载
-
简单易用的迁移学习
import mindspore
import mindspore_hub as mshub
from mindspore import set_context, GRAPH_MODE
set_context(mode=GRAPH_MODE,
device_target="Ascend",
device_id=0)
model = "mindspore/1.6/googlenet_cifar10"
# Initialize the number of classes based on the pre-trained model.
network = mshub.load(model, num_classes=10)
network.set_train(False)
# ...
3.MindSpore Hub使用场景
· 推理验证:mindspore_hub.load用于加载预训练模型,可以实现一行代码完成模型的加载。
· 迁移学习:通过mindspore_hub.load完成模型加载后,可以增加一个额外的参数项只加载神经网络的特征提取部分,这样就能很容易地在之后增加一些新的层进行迁移学习。
· 发布模型:可以将自己训练好的模型按照指定的步骤发布到MindSpore Hub中,以供其他用户进行下载和使用。
二、安装MindSpore Hub
1.确认系统环境信息
硬件平台支持Ascend、GPU和CPU。
确认安装Python 3.7.5版本。
MindSpore Hub与MindSpore的版本需保持一致。
MindSpore Hub支持使用x86 64位或ARM 64位架构的Linux发行版系统。