LRU算法 + Java实现代码 /自定义双链表/Java自带的双链表

本文详细介绍LRU(最近最少使用)缓存算法的工作原理及其两种实现方式:自定义双向链表和利用Java自带双向链表。通过实例演示了如何在不同场景下高效地运用LRU算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

  • 最常见的实现是使用一个链表保存缓存数据,详细算法实现如下

  1. 新数据插入到链表头部;
  2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
  3. 当链表满的时候,将链表尾部的数据丢弃。
    【命中率】
    当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
    【复杂度】
    实现简单。
    【代价】
    命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。
但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。

【如果是单链表的话(单链表只知道head指针),移除尾部节点时,时间复杂度不再是O(1),而是O(n)】

基于 HashMap 和 双向链表实现 LRU 的
整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。


LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 h 代表双向链表的表头,t 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:

save("key1", 7), save("key2", 0), save("key3", 1), save("key4", 2), get("key2"), save("key5", 3), get("key2"), save("key6", 4)

相应的 LRU 双向链表部分变化如下:

核心操作的步骤:

【1】save(key, value),首先在 HashMap 找到 Key 对应的节点,如果节点存在,更新节点的值,并把这个节点移动队头。如果不存在,需要构造新的节点,并且尝试把节点塞到队头,如果LRU空间不足,则通过 tail 淘汰掉队尾的节点,同时在 HashMap 中移除 Key。
【2】get(key),通过 HashMap 找到 LRU 链表节点,把节点插入到队头,返回缓存的值。

完整基于 Java 的代码参考如下:

方法1自定义双链表:

class DLinkedNode {
	String key;
	int value;
	DLinkedNode pre;
	DLinkedNode post;
}

public class LRUCache {
   
    private Hashtable<String, DLinkedNode>
            cache = new Hashtable<String, DLinkedNode>();
    private int count;
    private int capacity;
    private DLinkedNode head, tail;
 
    public LRUCache(int capacity) {
        this.count = 0;
        this.capacity = capacity;
 
        head = new DLinkedNode();
        head.pre = null;
 
        tail = new DLinkedNode();
        tail.post = null;
 
        head.post = tail;
        tail.pre = head;
    }
 
    public int get(String key) {
 
        DLinkedNode node = cache.get(key);
        if(node == null){
            return -1; // should raise exception here.
        }
 
        // move the accessed node to the head;
        this.moveToHead(node);
 
        return node.value;
    }
 
 
    public void set(String key, int value) {
        DLinkedNode node = cache.get(key);
 
        if(node == null){
 
            DLinkedNode newNode = new DLinkedNode();
            newNode.key = key;
            newNode.value = value;
 
            this.cache.put(key, newNode);
            this.addNode(newNode);
 
            ++count;
 
            if(count > capacity){
                // pop the tail
                DLinkedNode tail = this.popTail();
                this.cache.remove(tail.key);
                --count;
            }
        }else{
            // update the value.
            node.value = value;
            this.moveToHead(node);
        }
    }
    /**
     * Always add the new node right after head;
     */
    private void addNode(DLinkedNode node){
        node.pre = head;
        node.post = head.post;
 
        head.post.pre = node;
        head.post = node;
    }
 
    /**
     * Remove an existing node from the linked list.
     */
    private void removeNode(DLinkedNode node){
        DLinkedNode pre = node.pre;
        DLinkedNode post = node.post;
 
        pre.post = post;
        post.pre = pre;
    }
 
    /**
     * Move certain node in between to the head.
     */
    private void moveToHead(DLinkedNode node){
        this.removeNode(node);
        this.addNode(node);
    }
 
    // pop the current tail.
    private DLinkedNode popTail(){
        DLinkedNode res = tail.pre;
        this.removeNode(res);
        return res;
    }
}

转自 LRU算法 + Java实现代码 - 程序员大本营

方法2使用Java自带的双链表:

import java.util.HashMap;
import java.util.LinkedList;
import java.util.Map;
import java.util.Objects;
 

/**
 * @description: lru算法,线程安全
 * 使用jdk的双向链表
 * get元素时,如果不存在则返回null,反之,删除链表的该节点,把该节点放到表头
 * put元素时,
 *  如果没满,
 *    如果map中不存在,则插入表头,同时存入map
 *    如果map中存在,删除链表的该节点,把该节点放到表头;同时更新map中的值
 *  如果已满,
 *    如果map中不存在,则先删除表尾节点,再把新节点插入表头,同时存入map
 *    如果map中存在,则先删除表尾节点,再把新节点插入表头,同时更新map中的值
 */
  class Node<K,V>{
        /**
         * 键
         */
        K key;
 
        /**
         * 值
         */
        V value;
 
        public Node(K key, V value) {
            this.key = key;
            this.value = value;
        }
 
        @Override
        public String toString() {
            return "(" +
                    "key=" + key +
                    ", value=" + value +
                    ')';
        }
   }


 class LruCache<K,V> {
 
 
    /**
     * 通过与链表配合,使其查找速度在O(1)下完成
     */
    private Map<K,Node<K,V>> map;
 
    /**
     * 链表优点:便于添加和删除元素,都在O(1)时间内完成
     */
    private LinkedList<Node<K,V>> linkedList;
 
    /**
     * 缓存存储元素的数量
     */
    private int size;
 
    private  int defaultSize = 16;
 
    public LruCache() {
        this(16);
    }
 
    public LruCache(int size) {
        if(size <= 0){
            this.size = 16;
        }else {
            this.size = size;
        }
        this.map = new HashMap<>(this.size);
        this.linkedList = new LinkedList<>();
    }
 
    /**
     * 判断缓存元素是否存在,如果存在,则把链表中的元素删除,map中的数据不用删除,再在链表头部插入元素,并更新map
     * 当缓存没有满的话,直接把元素插入链表的表头,否则移除表尾元素(最旧未访问元素),在插入表头,注意更新map
     *
     * @param key : 键
     * @param value :值
     */
    public synchronized void put(K key,V value){
        //待添加元素
        Node<K,V> insertNode = new Node<>(key, value);
        //判断元素是否存在
        Node<K,V> node = map.get(key);
        //如果存在,则把链表中的元素删除,map中的数据不用删除,再在链表头部插入元素
        if(Objects.nonNull(node)){
            linkedList.remove(node);
            linkedList.addFirst(insertNode);
            //更新map中的相应value
            map.put(key,insertNode);
            return;
        }
        //如果缓存已经满的话,则删除最后未访问元素
        if(this.size == map.size()){
            //直接删除队列尾部元素,同时更新map
            linkedList.removeLast();
            map.remove(key);
            //在队列头部插入元素,同时更新map
            linkedList.addFirst(insertNode);
            map.put(key,insertNode);
            return;
        }
        //如果缓存没满,则执行添加即可
        map.put(key,insertNode);
        linkedList.addFirst(insertNode);
    }
 
    /**
     * 如果key存在,则返回相应value值,否者返回null
     *
     * @param key :键
     * @return :值
     */
    public synchronized V get(K key){
        //先向map查询是否存在
        Node<K,V> node = map.get(key);
        if(Objects.isNull(node)){
            return null;
        }
        //如果存在,则先删除后添加到队列头
        linkedList.remove(node);
        linkedList.addFirst(node);
        return node.value;
    }
 
    @Override
    public String toString() {
        StringBuilder stringBuilder = new StringBuilder();
        for(Node<K,V> node : linkedList ){
            stringBuilder.append(node.toString()).append(",");
        }
        return stringBuilder.toString().substring(0,stringBuilder.length()-1);
    }
 
}


 
public class LruCacheTest {
 
    public static void main(String[] args){
        LruCache<String,String> lruCache = new LruCache<>(3);
        lruCache.put("one","one");
        lruCache.put("two","two");
        lruCache.put("three","three");
        System.out.println(lruCache.toString());
        lruCache.get("one");
        System.out.println(lruCache.toString());
        lruCache.put("four","four");
        System.out.println(lruCache.toString());
        lruCache.get("one");
        System.out.println(lruCache.toString());
        System.out.println(lruCache.get("five"));
        lruCache.put("four","five");
        System.out.println(lruCache.toString());
    }
}

转自:LRU算法详解(java代码实现)_lru算法代码java-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二十六画生的博客

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值