
PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space

Charles R. Qi Li Yi Hao Su Leonidas J. Guibas
Stanford University

Abstract

Few prior works study deep learning on point sets. PointNet [20] is a pioneer in this
direction. However, by design PointNet does not capture local structures induced by
the metric space points live in, limiting its ability to recognize fine-grained patterns
and generalizability to complex scenes. In this work, we introduce a hierarchical
neural network that applies PointNet recursively on a nested partitioning of the
input point set. By exploiting metric space distances, our network is able to learn
local features with increasing contextual scales. With further observation that point
sets are usually sampled with varying densities, which results in greatly decreased
performance for networks trained on uniform densities, we propose novel set
learning layers to adaptively combine features from multiple scales. Experiments
show that our network called PointNet++ is able to learn deep point set features
efficiently and robustly. In particular, results significantly better than state-of-the-art
have been obtained on challenging benchmarks of 3D point clouds.

1 Introduction

We are interested in analyzing geometric point sets which are collections of points in a Euclidean
space. A particularly important type of geometric point set is point cloud captured by 3D scanners,
e.g., from appropriately equipped autonomous vehicles. As a set, such data has to be invariant to
permutations of its members. In addition, the distance metric defines local neighborhoods that may
exhibit different properties. For example, the density and other attributes of points may not be uniform
across different locations — in 3D scanning the density variability can come from perspective effects,
radial density variations, motion, etc.

Few prior works study deep learning on point sets. PointNet [20] is a pioneering effort that directly
processes point sets. The basic idea of PointNet is to learn a spatial encoding of each point and then
aggregate all individual point features to a global point cloud signature. By its design, PointNet does
not capture local structure induced by the metric. However, exploiting local structure has proven to
be important for the success of convolutional architectures. A CNN takes data defined on regular
grids as the input and is able to progressively capture features at increasingly larger scales along a
multi-resolution hierarchy. At lower levels neurons have smaller receptive fields whereas at higher
levels they have larger receptive fields. The ability to abstract local patterns along the hierarchy
allows better generalizability to unseen cases.

We introduce a hierarchical neural network, named as PointNet++, to process a set of points sampled
in a metric space in a hierarchical fashion. The general idea of PointNet++ is simple. We first
partition the set of points into overlapping local regions by the distance metric of the underlying
space. Similar to CNNs, we extract local features capturing fine geometric structures from small
neighborhoods; such local features are further grouped into larger units and processed to produce
higher level features. This process is repeated until we obtain the features of the whole point set.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

The design of PointNet++ has to address two issues: how to generate the partitioning of the point set,
and how to abstract sets of points or local features through a local feature learner. The two issues
are correlated because the partitioning of the point set has to produce common structures across
partitions, so that weights of local feature learners can be shared, as in the convolutional setting. We
choose our local feature learner to be PointNet. As demonstrated in that work, PointNet is an effective
architecture to process an unordered set of points for semantic feature extraction. In addition, this
architecture is robust to input data corruption. As a basic building block, PointNet abstracts sets of
local points or features into higher level representations. In this view, PointNet++ applies PointNet
recursively on a nested partitioning of the input set.

Figure 1: Visualization of a scan captured from a
Structure Sensor (left: RGB; right: point cloud).

One issue that still remains is how to generate
overlapping partitioning of a point set. Each
partition is defined as a neighborhood ball in
the underlying Euclidean space, whose param-
eters include centroid location and scale. To
evenly cover the whole set, the centroids are se-
lected among input point set by a farthest point
sampling (FPS) algorithm. Compared with vol-
umetric CNNs that scan the space with fixed
strides, our local receptive fields are dependent
on both the input data and the metric, and thus more efficient and effective.

Deciding the appropriate scale of local neighborhood balls, however, is a more challenging yet
intriguing problem, due to the entanglement of feature scale and non-uniformity of input point
set. We assume that the input point set may have variable density at different areas, which is quite
common in real data such as Structure Sensor scanning [18] (see Fig. 1). Our input point set is thus
very different from CNN inputs which can be viewed as data defined on regular grids with uniform
constant density. In CNNs, the counterpart to local partition scale is the size of kernels. [25] shows
that using smaller kernels helps to improve the ability of CNNs. Our experiments on point set data,
however, give counter evidence to this rule. Small neighborhood may consist of too few points due to
sampling deficiency, which might be insufficient to allow PointNets to capture patterns robustly.

A significant contribution of our paper is that PointNet++ leverages neighborhoods at multiple scales
to achieve both robustness and detail capture. Assisted with random input dropout during training,
the network learns to adaptively weight patterns detected at different scales and combine multi-scale
features according to the input data. Experiments show that our PointNet++ is able to process point
sets efficiently and robustly. In particular, results that are significantly better than state-of-the-art have
been obtained on challenging benchmarks of 3D point clouds.

2 Problem Statement

Suppose that X = (M,d) is a discrete metric space whose metric is inherited from a Euclidean space
Rn, where M ✓ Rn is the set of points and d is the distance metric. In addition, the density of M
in the ambient Euclidean space may not be uniform everywhere. We are interested in learning set
functions f that take such X as the input (along with additional features for each point) and produce
information of semantic interest regrading X . In practice, such f can be classification function that
assigns a label to X or a segmentation function that assigns a per point label to each member of M .

3 Method

Our work can be viewed as an extension of PointNet [20] with added hierarchical structure. We
first review PointNet (Sec. 3.1) and then introduce a basic extension of PointNet with hierarchical
structure (Sec. 3.2). Finally, we propose our PointNet++ that is able to robustly learn features even in
non-uniformly sampled point sets (Sec. 3.3).

2

sampling &
grouping

pointnet

set abstraction

38

interpolate

skip link concatenation

pointnet

sampling &
grouping

pointnet

interpolateunit
pointnet

unit
pointnet

fully connected layers
set abstraction

Segmentation

Classification

Hierarchical point set feature learning

cl
as

s
sc

or
es

per-
point

sco
res

(N
,d+C)

(1,C4) (k)

(N
1,K

,d+C)

(N
1,d

+C1)

(N
2,K

,d+C1)

(N
2,d

+C2)

(N
1,d

+C2+C1)

(N
1,d

+C3)

(N
,d+C3+C)

(N
,k)

Figure 2: Illustration of our hierarchical feature learning architecture and its application for set
segmentation and classification using points in 2D Euclidean space as an example. Single scale point
grouping is visualized here. For details on density adaptive grouping, see Fig. 3

3.1 Review of PointNet [20]: A Universal Continuous Set Function Approximator

Given an unordered point set {x1, x2, ..., xn} with xi 2 Rd, one can define a set function f : X ! R
that maps a set of points to a vector:

f(x1, x2, ..., xn) = �

✓
MAX
i=1,...,n

{h(xi)}
◆

(1)

where � and h are usually multi-layer perceptron (MLP) networks.

The set function f in Eq. 1 is invariant to input point permutations and can arbitrarily approximate any
continuous set function [20]. Note that the response of h can be interpreted as the spatial encoding of
a point (see [20] for details).

PointNet achieved impressive performance on a few benchmarks. However, it lacks the ability to
capture local context at different scales. We will introduce a hierarchical feature learning framework
in the next section to resolve the limitation.

3.2 Hierarchical Point Set Feature Learning

While PointNet uses a single max pooling operation to aggregate the whole point set, our new
architecture builds a hierarchical grouping of points and progressively abstract larger and larger local
regions along the hierarchy.

Our hierarchical structure is composed by a number of set abstraction levels (Fig. 2). At each level, a
set of points is processed and abstracted to produce a new set with fewer elements. The set abstraction
level is made of three key layers: Sampling layer, Grouping layer and PointNet layer. The Sampling
layer selects a set of points from input points, which defines the centroids of local regions. Grouping
layer then constructs local region sets by finding “neighboring” points around the centroids. PointNet
layer uses a mini-PointNet to encode local region patterns into feature vectors.

A set abstraction level takes an N ⇥ (d + C) matrix as input that is from N points with d-dim
coordinates and C-dim point feature. It outputs an N

0 ⇥ (d+ C

0) matrix of N 0 subsampled points
with d-dim coordinates and new C

0-dim feature vectors summarizing local context. We introduce the
layers of a set abstraction level in the following paragraphs.

Sampling layer. Given input points {x1, x2, ..., xn}, we use iterative farthest point sampling (FPS)
to choose a subset of points {xi1 , xi2 , ..., xim}, such that xij is the most distant point (in metric
distance) from the set {xi1 , xi2 , ..., xij�1} with regard to the rest points. Compared with random
sampling, it has better coverage of the entire point set given the same number of centroids. In contrast
to CNNs that scan the vector space agnostic of data distribution, our sampling strategy generates
receptive fields in a data dependent manner.

3

Grouping layer. The input to this layer is a point set of size N ⇥ (d+ C) and the coordinates of
a set of centroids of size N

0 ⇥ d. The output are groups of point sets of size N

0 ⇥K ⇥ (d + C),
where each group corresponds to a local region and K is the number of points in the neighborhood of
centroid points. Note that K varies across groups but the succeeding PointNet layer is able to convert
flexible number of points into a fixed length local region feature vector.

In convolutional neural networks, a local region of a pixel consists of pixels with array indices within
certain Manhattan distance (kernel size) of the pixel. In a point set sampled from a metric space, the
neighborhood of a point is defined by metric distance.

Ball query finds all points that are within a radius to the query point (an upper limit of K is set in
implementation). An alternative range query is K nearest neighbor (kNN) search which finds a fixed
number of neighboring points. Compared with kNN, ball query’s local neighborhood guarantees
a fixed region scale thus making local region feature more generalizable across space, which is
preferred for tasks requiring local pattern recognition (e.g. semantic point labeling).

PointNet layer. In this layer, the input are N 0 local regions of points with data size N 0⇥K⇥(d+C).
Each local region in the output is abstracted by its centroid and local feature that encodes the centroid’s
neighborhood. Output data size is N 0 ⇥ (d+ C

0).

The coordinates of points in a local region are firstly translated into a local frame relative to the
centroid point: x(j)

i = x

(j)
i � x̂

(j) for i = 1, 2, ...,K and j = 1, 2, ..., d where x̂ is the coordinate of
the centroid. We use PointNet [20] as described in Sec. 3.1 as the basic building block for local pattern
learning. By using relative coordinates together with point features we can capture point-to-point
relations in the local region.

3.3 Robust Feature Learning under Non-Uniform Sampling Density

concat

(a) (b)

A or Bconcat

(c)

A B

multi-scale aggregation
cross-level multi-scale aggregation

cross-level adaptive scale selection
Figure 3: (a) Multi-scale
grouping (MSG); (b) Multi-
resolution grouping (MRG).

As discussed earlier, it is common that a point set comes with non-
uniform density in different areas. Such non-uniformity introduces
a significant challenge for point set feature learning. Features learned
in dense data may not generalize to sparsely sampled regions. Con-
sequently, models trained for sparse point cloud may not recognize
fine-grained local structures.

Ideally, we want to inspect as closely as possible into a point set
to capture finest details in densely sampled regions. However, such
close inspect is prohibited at low density areas because local patterns
may be corrupted by the sampling deficiency. In this case, we should
look for larger scale patterns in greater vicinity. To achieve this goal
we propose density adaptive PointNet layers (Fig. 3) that learn to
combine features from regions of different scales when the input
sampling density changes. We call our hierarchical network with density adaptive PointNet layers as
PointNet++.

Previously in Sec. 3.2, each abstraction level contains grouping and feature extraction of a single scale.
In PointNet++, each abstraction level extracts multiple scales of local patterns and combine them
intelligently according to local point densities. In terms of grouping local regions and combining
features from different scales, we propose two types of density adaptive layers as listed below.

Multi-scale grouping (MSG). As shown in Fig. 3 (a), a simple but effective way to capture multi-
scale patterns is to apply grouping layers with different scales followed by according PointNets to
extract features of each scale. Features at different scales are concatenated to form a multi-scale
feature.

We train the network to learn an optimized strategy to combine the multi-scale features. This is done
by randomly dropping out input points with a randomized probability for each instance, which we call
random input dropout. Specifically, for each training point set, we choose a dropout ratio ✓ uniformly
sampled from [0, p] where p  1. For each point, we randomly drop a point with probability ✓. In
practice we set p = 0.95 to avoid generating empty point sets. In doing so we present the network
with training sets of various sparsity (induced by ✓) and varying uniformity (induced by randomness
in dropout). During test, we keep all available points.

4

Multi-resolution grouping (MRG). The MSG approach above is computationally expensive since
it runs local PointNet at large scale neighborhoods for every centroid point. In particular, since the
number of centroid points is usually quite large at the lowest level, the time cost is significant.

Here we propose an alternative approach that avoids such expensive computation but still preserves
the ability to adaptively aggregate information according to the distributional properties of points. In
Fig. 3 (b), features of a region at some level Li is a concatenation of two vectors. One vector (left in
figure) is obtained by summarizing the features at each subregion from the lower level Li�1 using
the set abstraction level. The other vector (right) is the feature that is obtained by directly processing
all raw points in the local region using a single PointNet.

When the density of a local region is low, the first vector may be less reliable than the second vector,
since the subregion in computing the first vector contains even sparser points and suffers more from
sampling deficiency. In such a case, the second vector should be weighted higher. On the other hand,
when the density of a local region is high, the first vector provides information of finer details since it
possesses the ability to inspect at higher resolutions recursively in lower levels.

Compared with MSG, this method is computationally more efficient since we avoids the feature
extraction in large scale neighborhoods at lowest levels.

3.4 Point Feature Propagation for Set Segmentation

In set abstraction layer, the original point set is subsampled. However in set segmentation task such
as semantic point labeling, we want to obtain point features for all the original points. One solution is
to always sample all points as centroids in all set abstraction levels, which however results in high
computation cost. Another way is to propagate features from subsampled points to the original points.

We adopt a hierarchical propagation strategy with distance based interpolation and across level
skip links (as shown in Fig. 2). In a feature propagation level, we propagate point features from
Nl ⇥ (d+C) points to Nl�1 points where Nl�1 and Nl (with Nl  Nl�1) are point set size of input
and output of set abstraction level l. We achieve feature propagation by interpolating feature values
f of Nl points at coordinates of the Nl�1 points. Among the many choices for interpolation, we
use inverse distance weighted average based on k nearest neighbors (as in Eq. 2, in default we use
p = 2, k = 3). The interpolated features on Nl�1 points are then concatenated with skip linked point
features from the set abstraction level. Then the concatenated features are passed through a “unit
pointnet”, which is similar to one-by-one convolution in CNNs. A few shared fully connected and
ReLU layers are applied to update each point’s feature vector. The process is repeated until we have
propagated features to the original set of points.

f

(j)(x) =

Pk
i=1 wi(x)f

(j)
iPk

i=1 wi(x)
where wi(x) =

1

d(x, xi)p
, j = 1, ..., C (2)

4 Experiments

Datasets We evaluate on four datasets ranging from 2D objects (MNIST [11]), 3D objects (Model-
Net40 [31] rigid object, SHREC15 [12] non-rigid object) to real 3D scenes (ScanNet [5]). Object
classification is evaluated by accuracy. Semantic scene labeling is evaluated by average voxel
classification accuracy following [5]. We list below the experiment setting for each dataset:

• MNIST: Images of handwritten digits with 60k training and 10k testing samples.

• ModelNet40: CAD models of 40 categories (mostly man-made). We use the official split
with 9,843 shapes for training and 2,468 for testing.

• SHREC15: 1200 shapes from 50 categories. Each category contains 24 shapes which are
mostly organic ones with various poses such as horses, cats, etc. We use five fold cross
validation to acquire classification accuracy on this dataset.

• ScanNet: 1513 scanned and reconstructed indoor scenes. We follow the experiment setting
in [5] and use 1201 scenes for training, 312 scenes for test.

5

Method Error rate (%)

Multi-layer perceptron [24] 1.60
LeNet5 [11] 0.80
Network in Network [13] 0.47
PointNet (vanilla) [20] 1.30
PointNet [20] 0.78

Ours 0.51
Table 1: MNIST digit classification.

Method Input Accuracy (%)

Subvolume [21] vox 89.2
MVCNN [26] img 90.1
PointNet (vanilla) [20] pc 87.2
PointNet [20] pc 89.2

Ours pc 90.7
Ours (with normal) pc 91.9
Table 2: ModelNet40 shape classification.

1024 points 512 points 256 points 128 points

Figure 4: Left: Point cloud with random point dropout. Right: Curve showing advantage of our
density adaptive strategy in dealing with non-uniform density. DP means random input dropout
during training; otherwise training is on uniformly dense points. See Sec.3.3 for details.

4.1 Point Set Classification in Euclidean Metric Space

We evaluate our network on classifying point clouds sampled from both 2D (MNIST) and 3D
(ModleNet40) Euclidean spaces. MNIST images are converted to 2D point clouds of digit pixel
locations. 3D point clouds are sampled from mesh surfaces from ModelNet40 shapes. In default we
use 512 points for MNIST and 1024 points for ModelNet40. In last row (ours normal) in Table 2, we
use face normals as additional point features, where we also use more points (N = 5000) to further
boost performance. All point sets are normalized to be zero mean and within a unit ball. We use a
three-level hierarchical network with three fully connected layers 1

Results. In Table 1 and Table 2, we compare our method with a representative set of previous
state of the arts. Note that PointNet (vanilla) in Table 2 is the the version in [20] that does not use
transformation networks, which is equivalent to our hierarchical net with only one level.

Firstly, our hierarchical learning architecture achieves significantly better performance than the
non-hierarchical PointNet [20]. In MNIST, we see a relative 60.8% and 34.6% error rate reduction
from PointNet (vanilla) and PointNet to our method. In ModelNet40 classification, we also see that
using same input data size (1024 points) and features (coordinates only), ours is remarkably stronger
than PointNet. Secondly, we observe that point set based method can even achieve better or similar
performance as mature image CNNs. In MNIST, our method (based on 2D point set) is achieving
an accuracy close to the Network in Network CNN. In ModelNet40, ours with normal information
significantly outperforms previous state-of-the-art method MVCNN [26].

Robustness to Sampling Density Variation. Sensor data directly captured from real world usually
suffers from severe irregular sampling issues (Fig. 1). Our approach selects point neighborhood of
multiple scales and learns to balance the descriptiveness and robustness by properly weighting them.

We randomly drop points (see Fig. 4 left) during test time to validate our network’s robustness to
non-uniform and sparse data. In Fig. 4 right, we see MSG+DP (multi-scale grouping with random
input dropout during training) and MRG+DP (multi-resolution grouping with random input dropout
during training) are very robust to sampling density variation. MSG+DP performance drops by less
than 1% from 1024 to 256 test points. Moreover, it achieves the best performance on almost all
sampling densities compared with alternatives. PointNet vanilla [20] is fairly robust under density
variation due to its focus on global abstraction rather than fine details. However loss of details
also makes it less powerful compared to our approach. SSG (ablated PointNet++ with single scale
grouping in each level) fails to generalize to sparse sampling density while SSG+DP amends the
problem by randomly dropping out points in training time.

1See supplementary for more details on network architecture and experiment preparation.

6

4.2 Point Set Segmentation for Semantic Scene Labeling

3DCNN[3] PointNet[12] Ours
0.730 0.739 0.845

PointNet[12] Our1 Ours2 Ours3
0.680 0.727 0.790 0.804

3DCNN[3] PointNet[12] Ours(SSG) Ours(MSG+DP) Ours(MRG+DP)
0.730 0.739 0.833 0.845 0.834

- 0.680 0.727 0.804 0.762

0.65

0.7

0.75

0.8

0.85

3DCNN[3] PointNet[12] Ours

Е � 4

A
cc

ur
ac

y

0.65

0.7

0.75

0.8

0.85

PointNet[12] Ours(SSG) Ours(SSG+DP) Ours(MSG+DP)

Е � 5

A
cc

ur
ac

y

0.65

0.775

0.9

3DCNN[3] PointNet[19] Ours(SSG) Ours(MSG+DP)Ours(MRG+DP)

0.762

0.804

0.727

0.680

0.8340.8450.833

0.7390.730

Е � 6

A
cc

ur
ac

y

ScanNet
ScanNet non-uniform

Figure 5: Scannet labeling accuracy.

To validate that our approach is suitable for large
scale point cloud analysis, we also evaluate on
semantic scene labeling task. The goal is to pre-
dict semantic object label for points in indoor
scans. [5] provides a baseline using fully con-
volutional neural network on voxelized scans.
They purely rely on scanning geometry instead
of RGB information and report the accuracy on
a per-voxel basis. To make a fair comparison,
we remove RGB information in all our experiments and convert point cloud label prediction into
voxel labeling following [5]. We also compare with [20]. The accuracy is reported on a per-voxel
basis in Fig. 5 (blue bar).

Our approach outperforms all the baseline methods by a large margin. In comparison with [5], which
learns on voxelized scans, we directly learn on point clouds to avoid additional quantization error,
and conduct data dependent sampling to allow more effective learning. Compared with [20], our
approach introduces hierarchical feature learning and captures geometry features at different scales.
This is very important for understanding scenes at multiple levels and labeling objects with various
sizes. We visualize example scene labeling results in Fig. 6.

Wall Floor Chair Desk Bed Door Table

PointNet Ours Ground Truth

Figure 6: Scannet labeling results. [20] captures
the overall layout of the room correctly but fails to
discover the furniture. Our approach, in contrast,
is much better at segmenting objects besides the
room layout.

Robustness to Sampling Density Variation
To test how our trained model performs on scans
with non-uniform sampling density, we synthe-
size virtual scans of Scannet scenes similar to
that in Fig. 1 and evaluate our network on this
data. We refer readers to supplementary mate-
rial for how we generate the virtual scans. We
evaluate our framework in three settings (SSG,
MSG+DP, MRG+DP) and compare with a base-
line approach [20].

Performance comparison is shown in Fig. 5 (yel-
low bar). We see that SSG performance greatly
falls due to the sampling density shift from uni-
form point cloud to virtually scanned scenes.
MRG network, on the other hand, is more robust
to the sampling density shift since it is able to au-
tomatically switch to features depicting coarser
granularity when the sampling is sparse. Even though there is a domain gap between training data
(uniform points with random dropout) and scanned data with non-uniform density, our MSG network
is only slightly affected and achieves the best accuracy among methods in comparison. These prove
the effectiveness of our density adaptive layer design.

4.3 Point Set Classification in Non-Euclidean Metric Space

In this section, we show generalizability of our approach to non-Euclidean space. In non-rigid shape
classification (Fig. 7), a good classifier should be able to classify (a) and (c) in Fig. 7 correctly as the
same category even given their difference in pose, which requires knowledge of intrinsic structure.
Shapes in SHREC15 are 2D surfaces embedded in 3D space. Geodesic distances along the surfaces
naturally induce a metric space. We show through experiments that adopting PointNet++ in this
metric space is an effective way to capture intrinsic structure of the underlying point set.

For each shape in [12], we firstly construct the metric space induced by pairwise geodesic distances.
We follow [23] to obtain an embedding metric that mimics geodesic distance. Next we extract
intrinsic point features in this metric space including WKS [1], HKS [27] and multi-scale Gaussian
curvature [16]. We use these features as input and then sample and group points according to the
underlying metric space. In this way, our network learns to capture multi-scale intrinsic structure
that is not influenced by the specific pose of a shape. Alternative design choices include using XY Z

coordinates as points feature or use Euclidean space R3 as the underlying metric space. We show
below these are not optimal choices.

7

Figure 7: An example of non-
rigid shape classification.

Results. We compare our methods with previous state-of-the-
art method [14] in Table 3. [14] extracts geodesic moments as
shape features and use a stacked sparse autoencoder to digest
these features to predict shape category. Our approach using non-
Euclidean metric space and intrinsic features achieves the best
performance in all settings and outperforms [14] by a large margin.

Comparing the first and second setting of our approach, we see
intrinsic features are very important for non-rigid shape classifica-
tion. XY Z feature fails to reveal intrinsic structures and is greatly
influenced by pose variation. Comparing the second and third
setting of our approach, we see using geodesic neighborhood is beneficial compared with Euclidean
neighborhood. Euclidean neighborhood might include points far away on surfaces and this neighbor-
hood could change dramatically when shape affords non-rigid deformation. This introduces difficulty
for effective weight sharing since the local structure could become combinatorially complicated.
Geodesic neighborhood on surfaces, on the other hand, gets rid of this issue and improves the learning
effectiveness.

Metric space Input feature Accuracy (%)

DeepGM [14] - Intrinsic features 93.03

Ours
Euclidean XYZ 60.18
Euclidean Intrinsic features 94.49

Non-Euclidean Intrinsic features 96.09
Table 3: SHREC15 Non-rigid shape classification.

4.4 Feature Visualization.

Figure 8: 3D point cloud patterns learned
from the first layer kernels. The model is
trained for ModelNet40 shape classification
(20 out of the 128 kernels are randomly
selected). Color indicates point depth (red
is near, blue is far).

In Fig. 8 we visualize what has been learned by the first
level kernels of our hierarchical network. We created
a voxel grid in space and aggregate local point sets that
activate certain neurons the most in grid cells (highest
100 examples are used). Grid cells with high votes
are kept and converted back to 3D point clouds, which
represents the pattern that neuron recognizes. Since the
model is trained on ModelNet40 which is mostly con-
sisted of furniture, we see structures of planes, double
planes, lines, corners etc. in the visualization.

5 Related Work

The idea of hierarchical feature learning has been very
successful. Among all the learning models, convolu-
tional neural network [10; 25; 8] is one of the most
prominent ones. However, convolution does not apply
to unordered point sets with distance metrics, which is
the focus of our work.

A few very recent works [20; 28] have studied how to
apply deep learning to unordered sets. They ignore the underlying distance metric even if the point
set does possess one. As a result, they are unable to capture local context of points and are sensitive
to global set translation and normalization. In this work, we target at points sampled from a metric
space and tackle these issues by explicitly considering the underlying distance metric in our design.

Point sampled from a metric space are usually noisy and with non-uniform sampling density. This
affects effective point feature extraction and causes difficulty for learning. One of the key issue is
to select proper scale for point feature design. Previously several approaches have been developed
regarding this [19; 17; 2; 6; 7; 30] either in geometry processing community or photogrammetry
and remote sensing community. In contrast to all these works, our approach learns to extract point
features and balance multiple feature scales in an end-to-end fashion.

8

