亿级分布式系统架构演进实战(十二)- 单元化架构(单元划分与架构设计)

亿级分布式系统架构演进实战(一)- 总体概要
亿级分布式系统架构演进实战(二)- 横向扩展(服务无状态化)
亿级分布式系统架构演进实战(三)- 横向扩展(数据库读写分离)
亿级分布式系统架构演进实战(四)- 横向扩展(负载均衡与弹性伸缩)
亿级分布式系统架构演进实战(五)- 横向扩展(缓存策略设计)
亿级分布式系统架构演进实战(六)- 横向扩展(监控与日志体系)
亿级分布式系统架构演进实战(七)- 横向扩展(安全防护设计)
亿级分布式系统架构演进实战(八)- 垂直拆分(领域划分及垂直分库设计)
亿级分布式系统架构演进实战(九)- 垂直拆分(服务间通信设计)
亿级分布式系统架构演进实战(十)- 垂直拆分(分布式事务管理设计)
亿级分布式系统架构演进实战(十一)- 垂直拆分(服务治理体系、安全架构升级)

一、逻辑单元(Cell)设计

目标:构建可独立运行的自治单元,单元内闭环处理所有业务,避免跨单元强依赖

1.1 分片规则与单元定义
分片维度规则与实现适用场景
用户ID哈希cell_id = hash(user_id) % 16(16单元)用户中心型业务(社交、电商)
地理位置根据用户IP解析城市编码(如北京=1,上海=2),映射到对应单元本地服务、低延迟业务(物流、游戏)
业务分片按业务线独立分片(如订单单元、支付单元)复杂系统解耦(金融、ERP)

单元粒度
中型单元(百万级用户):部署10-15个服务实例(8C16G规格),独立数据库分片(MySQL 8C32G)
扩展规则:用户量增长20%时触发自动扩容(K8s HPA + ShardingSphere动态分片)


1.2 单元自治原则

核心要求
服务闭环:单元内微服务自包含,跨单元调用需通过GZone代理(禁止直连)。
数据闭环:单元内数据库分片存储,仅通过Canal + Kafka异步同步全局数据。

技术实现

# 北京单元Nacos配置(服务注册隔离)
spring.cloud.nacos.discovery.namespace=bj-cell
spring.cloud.nacos.discovery.server-addr=bj-nacos:8848

# 数据同步配置(Canal监听北京单元Binlog)
canal.instance.master.address=bj-mysql:3306
canal.mq.topic=cell-sync-topic

二、全局服务层(GZone)设计(核心增强)

目标:统一处理跨单元协同服务,保障全局一致性与高可用

2.1 全局配置管理(Nacos动态推送)

核心能力

  1. 配置集中管理:统一维护风控规则、黑白名单、灰度策略等全局配置。
  2. 动态生效:配置变更秒级推送至所有单元,无需重启服务。

实现方案
配置发布

# 全局风控规则(Nacos配置ID=risk_rules)
risk_rules:
  - pattern: "amount > 10000"
    action: "REVIEW"
  - pattern: "ip in blacklist"
    action: "BLOCK"

监听与生效

@NacosConfigListener(dataId = "risk_rules", group = "GLOBAL_GROUP")
public void onRiskRulesUpdate(String newRules) {
    RiskRuleManager.refreshRules(newRules);  // 动态生效
}

2.2 跨单元事务协调(Seata AT模式增强)

核心挑战:跨单元数据操作的原子性与一致性

技术方案

  1. 全局事务ID(XID):由GZone生成并透传至所有参与单元。
  2. 全局锁管理:通过Redis分布式锁替代数据库行锁,提升并发性能。
  3. 事务恢复机制:GZone集群持久化事务日志,宕机后自动恢复。

生产配置

# Seata Server高可用配置(3节点集群)
seata:
  registry:
    type: nacos
    nacos:
      server-addr: gzone-nacos:8848
  config:
    type: nacos
    nacos:
      server-addr: gzone-nacos:8848
  store:
    mode: db
    db:
      url: jdbc:mysql://gzone-mysql:3306/seata
      user: seata
      password: seata

# Redis分布式锁配置
redis.lock.prefix=seata:lock:
redis.lock.expire=30

事务流程

GZone UnitA UnitB 开启全局事务(XID=TX123) 返回XID 本地事务(扣减库存) 注册分支事务(Branch A) 跨单元调用(创建订单) 本地事务(生成订单) 注册分支事务(Branch B) 提交/回滚 提交/回滚 GZone UnitA UnitB

2.3 跨单元数据同步仲裁

核心问题:单元间数据同步冲突(如用户同时修改手机号)

冲突解决策略

冲突类型自动解决策略人工干预场景
时间戳冲突最后写入优先(Last Write Win)
业务规则冲突以核心单元为准(如支付单元状态优先)转账金额不一致
版本号冲突基于Vector Clock合并版本分布式购物车商品更新

自动修复流程

  1. 差异检测:定时任务扫描单元间数据差异(如订单状态不一致)。
  2. 规则匹配:根据预定义规则自动修复(如以支付单元状态为准)。
  3. 人工队列:无法自动修复时,记录到人工处理队列(通过管理台处理)。

三、接入层设计

目标:智能路由流量,支持单元级容灾与灰度发布

3.1 流量路由策略

DNS智能解析:根据用户IP解析至最近单元(如华北用户→北京单元)。
API网关路由:支持Header显式指定单元(X-Cell-ID=1),用于调试与灰度。

# Spring Cloud Gateway配置(北京单元路由)
spring.cloud.gateway.routes:
  - id: bj_cell
    uri: lb://bj-cell-service
    predicates:
      - Header=X-Cell-ID, 1

灰度发布

  1. 新版本服务部署至20%实例,标记为Gray
  2. 灰度流量通过Header X-Gray=1 导流。
  3. 监控灰度服务成功率,全量发布或回滚。

3.2 容灾与熔断(Sentinel增强)

熔断规则

# 北京单元熔断规则(异常比例>60%触发)
sentinel:
  degrade:
    rules:
      - resource: bj-cell-service
        grade: EXCEPTION_RATIO
        count: 0.6
        timeWindow: 30
        minRequestAmount: 20

容灾切换流程

  1. 健康检测:Prometheus监控单元HTTP成功率与延迟。
  2. 自动熔断:连续3次失败后,标记单元为不健康。
  3. 流量切换:DNS更新解析记录,流量导向备用单元。

四、服务层设计

目标:业务逻辑无状态化,支持快速扩缩容

4.1 无状态化实现

会话外部化:Spring Session + Redis存储用户状态。

@EnableRedisHttpSession(maxInactiveIntervalInSeconds = 1800)
public class SessionConfig {
    @Bean
    public RedisConnectionFactory redisConnectionFactory() {
        return new LettuceConnectionFactory("bj-redis", 6379);
    }
}

配置外置:数据库连接、缓存地址从Nacos动态获取。


4.2 服务容错设计

降级策略

@SentinelResource(
    value = "queryProduct", 
    fallback = "queryProductFallback", 
    blockHandler = "queryProductBlock"
)
public Product queryProduct(String id) {
    // 正常查询逻辑
}
public Product queryProductFallback(String id) {
    return Product.DEFAULT;  // 返回默认商品
}

五、数据层设计

目标:保障数据本地化与最终一致性

5.1 单元内分库分表

ShardingSphere分片规则

rules:
- !SHARDING
  tables:
    user:
      actualDataNodes: cell_${0..15}.user_${0..3}
      databaseStrategy:
        standard:
          shardingColumn: user_id
          shardingAlgorithmName: hash_mod
  shardingAlgorithms:
    hash_mod:
      type: HASH_MOD
      props:
        sharding-count: 16

5.2 跨单元数据同步(最终一致性)

技术实现

  1. Canal监听Binlog:实时捕获数据变更事件。
  2. Kafka消息广播:将变更事件发布至全局Topic。
  3. 单元消费同步:各单元消费消息并写入本地库。

冲突解决
自动合并:基于时间戳与版本号自动解决大部分冲突。
人工干预:剩余冲突记录至管理台,由运维处理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

power-辰南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值