亿级分布式系统架构演进实战(一)- 总体概要

前言

不说废话,这次分享是某500强企业真实亿级流量业务中台技术架构演进过程实战。

核心目标

构建一个兼具高性能、高可用、强一致性的分布式系统,支撑亿级流量场景下的稳定运行。

演进路线大纲

在这里插入图片描述

阶段一:横向扩展(应对万级QPS)
核心目标:突破单机性能瓶颈,建立弹性基础
                         [Nginx]
                         /  |  \
                    [App1][App2][App3]    ← 无状态服务集群
                          \  |  /
                         [DB Proxy]      ← 读写分离中间件
                          /     \
                       [Master]          ← 写节点
                      [Slave1][Slave2]   ← 读节点集群

关键任务清单

  1. 服务无状态化改造
    • 会话管理:Spring Session + Redis Cluster(TTL 30分钟)
    • 配置文件外置:Nacos配置中心动态下发
    • 本地缓存清理:无 → Caffeine(性能提升40%)

  2. 数据库读写分离
    • 中间件选型:ShardingSphere-JDBC(轻量级,兼容Spring Cloud)
    • 主从同步延迟处理:

    // 强制走主库的注解
    @MasterRoute
    public void updateOrder(Order order) {
        // 写操作强制路由到主库
    }
    

    • 连接池优化:Druid连接池(MaxActive=200, MinIdle=20)

技术选型对比

组件方案1方案2最终选择
负载均衡NginxAWS ALBNginx + Keepalived(自主可控)
配置中心Spring Cloud ConfigAlibaba NacosNacos(配置热更新)
缓存集群Redis SentinelRedis ClusterRedis Cluster(自动分片)

实施步骤示例

  1. 灰度验证:10%流量切到无状态节点
  2. 全量切换:旧会话数据迁移到Redis
  3. 性能压测:使用JMeter模拟1万用户并发

典型问题与解决方案
问题:主从延迟导致查询旧数据
方案:关键业务查询强制走主库(@MasterRoute注解)
问题:缓存击穿引发DB雪崩
方案:BloomFilter预热+互斥锁重建


阶段二:垂直拆分(支撑十万级QPS)
核心目标:解耦业务,突破单数据库连接数限制
                         [API Gateway]
                        /      |      \
               Order-Service  Pay-Service  Logistics-Service   ← 垂直拆分微服务
                     /           |            \
             [OrderDB]      [PayDB]        [LogisticsDB]        ← 分库分表
           Shard_00-03     Shard_00-03     Shard_00-03

关键任务清单

  1. 业务领域拆分
    • DDD划分:订单域、支付域、物流域建立Bounded Context
    • 数据库拆分:按业务线独立部署MySQL集群
    • 服务通信:OpenFeign+Protobuf(节省30%带宽)

  2. 分库分表实施
    • 分片策略:

    // 订单ID分片算法
    int shardNo = (orderId.hashCode() & Integer.MAX_VALUE) % 1024;
    String tableSuffix = String.format("_%04d", shardNo / 256); 
    

    • 分布式ID生成:Leaf-Snowflake(美团开源的ID生成器)

技术选型对比

组件方案1方案2最终选择
分库分表中间件MyCATShardingSphereShardingSphere(无缝集成Spring)
事务方案强一致 2PC/ Seata/TCC最终一致 本地消息/事务消息多方案混合,适配业务场景
监控系统PrometheusSkyWalkingSkyWalking(全链路追踪)、Prometheus(指标监控)

实施步骤示例

  1. 数据迁移:使用DataX进行存量数据分片
  2. 双写验证:新旧分片同时写入核对数据
  3. 灰度切换:按用户ID尾号逐步切流

典型问题与解决方案
问题:跨分片分页查询性能差
方案:ES构建二级索引,替代复杂查询
问题:分布式事务数据不一致
方案:Seata事务+每日对账任务兜底


阶段三:单元化改造(目标百万级QPS)

1000000*3600 = 36亿次请求/每小时

核心目标:实现异地多活,突破数据库容量瓶颈
                          [Global DNS]
                              |
                      [Traffic Director]  ← 基于用户位置路由
                         /          \
                [Unit A: us-east-1] [Unit B: us-west-2]   ← 独立单元
                  /       |       \         /       |       \
               Order   Payment  Inventory  Order  Payment  Inventory  ← 微服务副本
                DB       DB        DB       DB      DB        DB      ← 单元内数据闭环

关键任务清单

  1. 用户分片路由
    • 分片算法:

    // 用户ID哈希分片
    int hash = Hashing.murmur3_32().hashString(userId, UTF_8).asInt();
    int unitNo = Math.abs(hash % 64);  // 分为64个单元
    

    • 路由组件:自研RouteSDK(本地缓存分片映射表)

  2. 跨单元数据同步
    • 同步方案:

    Unit A → Canal抓取binlog → RocketMQ → Unit B消费
    

    • 冲突解决:版本向量(Version Vector)+最后写入胜出(LWW)

技术选型对比

组件方案1方案2最终选择
单元发现EurekaNacosNacos(元数据路由)
消息队列KafkaRocketMQRocketMQ(事务消息)

实施步骤示例

  1. 单元划分:按用户ID分片,首批部署4个单元
  2. 数据同步:使用DTS进行实时双向同步
  3. 流量切换:DNS权重调整逐步切流

典型问题与解决方案
问题:跨单元事务延迟高
方案:TCC模式+异步冲正(最终一致性)
问题:热点用户访问倾斜
方案:动态分片(如将大V用户拆分到多个单元)


架构演进性能基线对比

指标阶段1(横向扩展)阶段2(垂直拆分)阶段3(单元化)
最大QPS87001100001040000
平均延迟85ms43ms27ms
故障恢复时间17分钟2分钟10秒
扩容耗时22分钟11分钟自动弹性

后续我会根据演进的阶段,逐步细化演进路线的实现细节!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

power-辰南

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值