
 Copyright 1999 University of California

 pur-

inter-
a: A Sys-

 Java.
tion of

 DOM
ming

mming

ols for
gram-
nternal

e "One
suffi-

 of data

n of

n-
ds

de

er user-
Interface Definition Language

by David G. Messerschmitt

Supplementary section for Understanding Networked Applications: A First Course, Morgan
Kaufmann, 1999.

Copyright notice: Permission is granted to copy and distribute this material for educational
poses only, provided that this copyright notice remains attached.

An interface definition language (IDL) supports the specification and description of object
faces. Systems programming languages like Java can also describe an interface (see "Jav
tems Programming Language"). However, the major goal of an IDL is to separate the definition
from any specific systems programming language, while the Java interface is particular to
For purposes of Chapters 10 and 11, an IDL is useful to define interfaces without considera
implementation issues.

Distributed object management (DOM) also requires an IDL (see Chapter 16). One goal of
is to allow objects to interact even if they were implemented using different systems program
languages. IDL allows object interfaces to be published and advertised in a system progra
language-independent way.

The first step in implementing an object is to describe its interface in IDL. There are then to
translating that IDL description into a template for the object in any of several system pro
ming languages, like C++ and Java. A programmer can then proceed to implement the i
processing and data structures by adding program code to that template.

This appendix describes one such IDL, that defined as part of the CORBA standard (se
DOM Standard: CORBA" in Chapter 16). This is not a complete description, but includes
cient detail to illustrate application architectures at the level of detail in Chapter 10.

Data types

IDL defines a number of basic data types because this is necessary to specify the structure
passing through the interface. The following is a representative subset:

• float , double : single and double precision floating point, approximate representatio
real numbers

• short , long : 16-bit and 32-bit representations of integers

• boolean : assumes one of two values, TRUE or FALSE

• string : an arbitrary length string of characters

A special bold font is used for keywords like float , which are reserved words used by the la
guage. This bold fond is not part of the IDL specification, but will make clearer below what wor
are reserved and what words are created by the designer. The statement

typedef string Date;

simply states that Date is another name for string . The ability to rename types can make co
more readable.

Often it is appropriate to create user-defined data types that assemble basic types and oth
Page 1 8/18/99

 Copyright 1999 University of California

es

des
hone
r dif-
 the

st of
h ”/

di-

meters
-
d
eter,
lso has a

n
defined types. The keyword for this is struct , which is followed by a list of the assembled typ
separated by “;” and delimited by “{}”.

E x a m p l e … A phone number has an internal structure consisting of country and city co
and local number. It is useful to capture this structure—as opposed to storing the p
number as one character string—so that an application can construct phone numbers fo
ferent circumstances. For example, the application may want to easily construct only
local portion of the number. This can be accomplished by defining a struct representing
the phone number, as in:

struct Phone_number {
short prefix;
short country_code;
short city_code;
short local_number;
}

Subsequently, parameters and return values can be Phone_number ’s, as a shorthand.

IDL interfaces

The keyword interface is used to define the interface to an object, and is followed by a li
attributes and methods separated by “;” and delimited by “{}”. In IDL, any line beginning wit
/” is a comment that helps understand the interface but is otherwise ignored.

E x a m p l e … Let Person be an object interface that represents relevant information about an in
vidual, like a citizen or customer. In a simple case, Person may have only three attributes and no
methods:

interface Person {
//Interface to object representing information about a person

attribute Name name;
attribute Address address;
attribute Phone_number phone_number;
}

Note that each attribute has a type (like Address) and a name (like address). The types must
either be basic types or must have been previously defined by a struct statement.

Methods at the interface are described as the name of the method followed by a list of para
and return values (collectively called arguments) separated by “,” and delimited by “()”. A param
eter is indicated by the keyword in and a return value by out , each followed by a data type an
name. It is also possible to specify an inout , which means a value that is passed as a param
and also returned, its value possibly having been changed by the method. Each method a
single unnamed return value. If there is in fact no return value, it can be declared as typevoid .
Thus, there are three ways to get data back from a method: either as a return value, or as aout or
inout argument.

E x a m p l e … Suppose a method add does a simple addition of two long integers, returning the
result. In the notation of Chapter 6, this method might be written

add: A,B → C, status

but in IDL it would be specified as
//Method adds to integers and returns their sum
//Method returns FALSE if the result cannot be trusted
Page 2 8/18/99

 Copyright 1999 University of California

-

s

e
er

on is

ds

le-
e, so a

 also
boolean add (in long addend1, in long addend2, out long sum)

The unnamed return value with type boolean , would typically be used to indicate some status con
dition, equivalent to status in the earlier notation. In the case of add() , for example, the return
would be TRUE if everything went well, and FALSE is something aberrant happened and the result
cannot be trusted, like for example there was arithmetic overflow (addend1 and addend2 were
together too large to be represented by a long).

Methods are simply listed in the interface specification along with attributes.
E x a m p l e … A drivers license might be represented by an object with interfac

Driver’s_license , which includes methods to check the current validity of the license eith
today or at some other date:

interface Driver’s_license {
//Interface to object that maintains pertinent information
//on a driver

attribute Person license_holder;
attribute short drivers_license_number;
attribute Date expiration_date;

//Method returns TRUE if the license is currently valid
boolean license_valid_now ();

//Method returns TRUE if license was valid on given date
boolean was_license_valid (in Date as_of_date)
}

Note that an attribute can be either data (as in license_number) or an object reference (as in
license_holder). The method license_valid_now () may, for example, compare the
current date to the expiration_date , and return TRUE or FALSE depending on the outcome of
that comparison. The return value of the method is thus boolean .

Interface inheritance

IDL can specify interface inheritance as shown in the following example in which Pers
extended to include some additional attributes:

interface Person_with_age : Person {
attribute short age;
Date age_as_of_date (in Date date);
}

Objects with derived interface Person_with_age have available all the attributes and metho
of the base interface Person , and in addition the attribute age and method
age_as_of_date() . It is also implicitly allowed (but not visible at the interface) for the imp
mentation of objects with the derived interface to redefine any methods of the base interfac
given method of either Person or Person_with_age may behave differently.

Polymorphism is allowed in the sense that any method that declares an in argument of interface
Person can actually be passed the reference to an object with interface Person_with_age .
Multiple inheritance—a derived interface inheriting more than one base interface—is
allowed (although not discussed in the book).
Page 3 8/18/99

 Copyright 1999 University of California

cation.
 address

.ber-
r will

ecture
Address book example

To illustrate the use of IDL, consider an address book that might be used in an email appli
The address book has a list of entries, each entry including the name, nickname, and email
of the person.

E x a m p l e … Say the nickname of Joe Bartender is “Joe”, and his email address is “joeb@sims
keley.edu”. In the email address book user interface, he would be listed under “Joe”, but the use
also want to keep around his full name for reference.

An architecture for this application was discussed in "Address Book Example". That archit
can be described using IDL. Objects with interfaces Name, Address , and Phone_number are
created as follows:

interface Name {
// Interface of object that stores a person’s name

// We keep parts of the name separate so
// that we can easily implement
// operations like sort on last name only
attribute string first_name;
attribute string middle_name_or_initial;
attribute string last name;

// The following illustrates how methods can assist
// even a simple interface like this

// This method will tell us if this Entry
// matches a certain lastname, as a convenience for
// searches
boolean does_lastname_match? (in string trial_name);

}

interface Address {
// This illustrates that data structures rather than
// objects can be used

// By convention, any of these data items that don’t
// apply are zero-length strings
attribute string street_addr_1;
attribute string street_addr_2;
attribute string city;
attribute string state;
attribute string state_appreviation;
attribute string country;
attribute string mail_code;

// No methods, although there could be
}

interface Phone_number {
Page 4 8/18/99

 Copyright 1999 University of California

l meth-
// By convention, any of these data items that don’t
// apply are “-1” (since “0” may be legitimate)
attribute short local_number;
attribute short city_code;
attribute short country_code;
attribute short dial_prefix;

// No methods, although there could be
}

It is also convenient to make Email_addr an object, in part because it can have some usefu
ods:

interface Email_addr {
// Convention is that total address is
// “login_name@host_name”
attribute string host_name;
attribute string login_name;

// Method asks the object to verify that the
// hostname is valid (however it wants to do that)
boolean is_hostname_valid ();
boolean is_login_name_valid ();
}

Now, the Entry interface can be constructed by multiple interface inheritance:
interface Entry : Name, Address, Phone_number {
// This interface implicitly includes attributes and
// methods of Name, Address, and Phone_number through
// multiple interface inheritance

attribute string nickname;

// This attribute illustrates an important point:
// attributes can be references to objects
attribute Email_addr email_address;

// No more methods, although there could be
}

Next, a List object stores a list of generic Object ’s:
interface List {
// This interface stores a list of Object ’s, and provides
// a set of generic useful operations on this list

// We assume a concept of the “current Object ”, which
// may be any one of the contained Object’ s

// This attribute tells us how many Object ’s
// are on the list
Page 5 8/18/99

 Copyright 1999 University of California

any
// The keyword readonly specifies that the attribute
// cannot be modified at the interface; changing it
// is encapsulated in the Object
readonly attribute short number_of_objects;

// This method adds an new Object to the end of the list
// It also illustrates that parameters can be objects
void add (in Object object_to_add);

// We need a way to iterate through the Object ’s in the
// list, changing the “current” Object ; by convention,
// this method cycles through all Object ’s as it is called
// multiple times
void iterate_current();

// The following methods operate on the current Object

// This method does nothing if there are no Object ’s
// currently stored on the List
void delete();

// This method returns the “current” Object
Object current();
}

A List of Object ’s is useful because IDL also supports polymorphism. Since literally
object interface is implicitly derived from Object , any interface can be substituted for Object
as it is stored in the List . Polymorphism has allowed List to maintain a list of literally anything.

Now, it is simple to build an Address_book by inheriting the generic List :
interface Address_book : List [
// Note that Address_book now has all the attributes and
// methods of List. Interface Entry can be readily
// substituted anywhere for Object

// We can now add things particular to Address_book
// not supported by interface List

// Support queries on nickname or lastname
// These methods return TRUE if an entry is found,
// FALSE if no entry is found
// After these methods, the “current” Entry
// is the one found
// (so, for example, we can conveniently delete it)
boolean entry_with_lastname(

in string lastname,
out Entry entry
);

boolean entry_with_nickname(
in string nickname,
Page 6 8/18/99

 Copyright 1999 University of California
out Entry entry
);

}

Page 7 8/18/99

