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ABSTRACT
In general-purpose applications, most data is dynamically allocated.
The memory manager therefore plays a crucial role in applica-
tion performance by determining the spatial locality of heap ob-
jects. Previous general-purpose allocators have focused on reduc-
ing fragmentation, while most locality-improving allocators have
either focused on improving the locality of the allocator (not the
application), or required programmer hints or profiling to guide ob-
ject placement. We present a high-performance memory allocator
called Vam that transparently improves both cache-level and page-
level locality of the application while achieving low fragmentation.
Over a range of large-footprint benchmarks, Vam improves applica-
tion performance by an average of 4%–8% versus the Lea (Linux)
and FreeBSD allocators. When memory is scarce, Vam improves
application performance by up to 2X compared to the FreeBSD al-
locator, and by over 10X compared to the Lea allocator.

Categories and Subject Descriptors
D.3.4 [Processors]: Memory management (garbage collection);
D.4.2 [Storage Management]: Main memory, Virtual memory

General Terms
Algorithms, Languages, Performance

Keywords
Vam, memory management, allocator, fragmentation, cache local-
ity, paging, virtual memory

1. Introduction
Explicit memory managers have traditionally focused on reducing
the number of discontiguous free chunks of memory, or fragmenta-
tion. Reducing fragmentation improves space efficiency and under-
standably has received considerable attention by memory manager
designers. For example, the widely-used Lea allocator that forms
the basis of the Linux malloc (DLmalloc) was designed specifi-
cally for high performance and low fragmentation [12, 13, 16].
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However, the widely-acknowledged increasing latency gap be-
tween the CPU and the various levels of the memory hierarchy
(caches, RAM, and disk) makes improving data locality a first-level
concern. For many applications, this means improving the locality
of the heap. While applications typically exhibit temporal locality,
their spatial locality is dictated by the memory allocator, which de-
termines where and how to lay out the application’s dynamic data.
This allocator-controlled locality can have a significant impact on
the application’s overall performance.

We present a new general-purpose memory allocator called Vam
that improves data locality while providing low fragmentation. Vam
increases page-level locality by managing the heap in page-sized
chunks and aggressively giving up free pages to the virtual mem-
ory manager. By eliminating object headers, using a judicious se-
lection of size classes, and by allocating objects using a reap-based
algorithm [5], Vam improves cache-level locality.

We compare Vam to the low-fragmentation Linux allocator (DL-
malloc) and to the page-level locality-improving FreeBSD alloca-
tor (PHKmalloc) [14], both of which we describe in detail. To our
knowledge, PHKmalloc has not been discussed previously in the
memory management literature. We build on these algorithms, in-
corporating their best features while removing most of their disad-
vantages.

Our experiments on a suite of memory-intensive benchmarks
show that Vam consistently achieves the best performance. Vam
performs on average 8% faster than DLmalloc and 4% faster than
PHKmalloc when there is sufficient physical memory to avoid pag-
ing. When physical memory is scarce, Vam outperforms these al-
locators by over 10X and up to 2X, respectively. We show that part
of this improvement is due to an unintended but fortunate synergy
between Vam and the way Linux manages swap space, which holds
evicted pages on disk. We call this phenomenon swap prefetchabil-
ity and show that it leads to improved performance when paging.

2. Previous General-Purpose Memory Allocators
Before discussing Vam, we describe in detail the most influential
allocators in its design. These are DLmalloc, which focuses on
reducing fragmentation; PHKmalloc, which focuses on improving
page-level locality; and reaps, which provide high-speed allocation
and cache-level locality.

2.1 DLmalloc
DLmalloc is a widely-used malloc implementation written by
Doug Lea [16]. It forms the basis of the Linux memory alloca-
tor included in the GNU C library. DLmalloc has been tuned over
many years and is widely considered to be both among the fastest
and most space-efficient allocators [5, 13]. The version we use in
this study is the latest release, version 2.7.2.

DLmalloc is an approximate best-fit allocator with different be-



havior based on object size. Small objects (less than 64 bytes) are
allocated from exact-size quicklists, linked lists of free objects. Re-
quests for a medium-sized object (between 72 and 504 bytes) and
certain other events trigger DLmalloc to coalesce the objects in
these quicklists (combining adjacent free objects) in the hope that
this reclaimed space can be reused for the medium-sized object.
For medium-sized objects, DLmalloc performs immediate coalesc-
ing and splitting (breaking objects into smaller ones) and approxi-
mates best-fit. DLmalloc manages large objects (between 512 and
128K bytes) similarly, but places these in a group of free lists con-
taining free objects of a particular size range. These size ranges
are logarithmically spaced and DLmalloc sorts free objects within
each range by size, so that the first object that fits is the best fit.
Very large objects (128KB or larger) are allocated using mmap.

One notable implementation detail of DLmalloc shared by other
allocators is that each object has a header that stores metadata con-
taining the object’s size and status. This metadata is also referred
as boundary tags and simplifies coalescing. In DLmalloc, each ob-
ject header is an 8-byte chunk placed before the object. This space
overhead can become significant if an application allocates a large
number of small objects. Placing the header next to the object itself
also degrades data locality, because the header is only accessed by
the allocator and not by the application accessing the object [9]. In
other words, the header and the object have different access pat-
terns and frequencies and, if put in the same cache line, may lower
cache line utilization.

2.2 PHKmalloc
The PHKmalloc allocator was designed for the FreeBSD operating
system by Poul-Henning Kamp [14]. As far as we are aware, this
memory allocator has not previously been described in the litera-
ture. We describe the latest release (version 1.89) here.

Unlike DLmalloc, which disregards page boundaries, PHKmal-
loc’s design is page-oriented. The central design goal of PHKmal-
loc was to minimize the number of pages accessed by both the ap-
plication and the allocator [14]. The heap is a contiguous space
divided into 4K pages and a table stores the status of these pages
(empty or occupied).

In PHKmalloc, every object in a page is the same size. This or-
ganization allows PHKmalloc to avoid individual object headers by
storing metadata such as object size at the start of the page, which
can be located by bitmasking an object’s address. The metadata
field also contains a bitmap that records the status of each object
(free or allocated). This technique of avoiding per-object headers
is sometimes referred to as a BIBOP-style organization (“Big Bag
of Pages” [10]) and has been employed by many memory man-
agers, including the Boehm-Demers-Weiser conservative garbage
collector [7] and the Hoard multiprocessor memory allocator [3].

PHKmalloc distinguishes just two object size classes: small (less
than 2KB) and large (2KB or more). Like the BSD 4.2 allocator by
Chris Kingsley [22], PHKmalloc rounds up small object requests
to the nearest power of two and rounds large object requests up to
the nearest multiple of the page size; the remainder in the last page
is not reused. PHKmalloc keeps pages containing free space in a
doubly-linked list sorted by address order, implementing the policy
known as address-ordered first-fit [22].

PHKmalloc’s rounding-up of object sizes makes it susceptible to
considerable internal fragmentation (unused space inside of each
object) or page-internal fragmentation (unused space at the end of
the last page of a large object) [1]. In practice, however, the space
saved by eliminating individual object headers is largely offset by
this internal fragmentation.

On the other hand, using coarse size classes dramatically reduces

the number of free lists, allowing the quick reuse of freed objects
and reducing external fragmentation. In some situations, this can
improve locality, as we show in Sections 4.3 and 4.5.

A key advantage of PHKmalloc’s page-oriented design is that it
allows the allocator to return to the kernel any free page via the
madvise system call. After this call, although the page is still
mapped from the kernel, its contents will not be written back to
disk and so its physical space may be immediately reclaimed by the
kernel. If the page is touched again, the virtual memory manager
will materialize a demand-zero page.

2.3 Reaps
Reaps are a combination of regions and heaps that extend region
semantics with individual object deletion [5]. A reap consists of a
chunk of memory, a “bump” pointer set to the start of the chunk,
and an associated heap. Allocation in a reap initially consists of
bumping its pointer through the chunk of memory. Reaps add
object headers to every allocated object (our adaptation of reaps
does not; see Section 3.4). These headers contain metadata that
allows the object to be subsequently placed on a heap. Reaps act
like regions (performing pointer-bumping allocation) until a call to
reapFree deletes an individual object. Freed objects are placed
onto an associated heap. Subsequent allocations from that reap use
memory from the heap until it is exhausted, at which point it reverts
to region mode. Experimental results show that reaps capture most
of the performance of region allocators [5].

3. Vam
Vam builds on previous allocator designs to achieve its goals of
high performance and improved application-level locality both at
the cache and page level. We implemented Vam using Heap Layers,
a C++-based infrastructure for building high-performance memory
managers [4]. Figure 1 presents an example of Vam’s heap layout.
The following is an overview of Vam’s design, which we explore
in detail in the rest of this section.

Fine-grained size classes: Vam improves cache utilization by us-
ing exact-fit size classes for objects up to 496 bytes in size,
thus eliminating internal fragmentation. For larger objects,
Vam also uses fine-grained size classes to provide efficient
best-fit searches.

Page-based: Vam uses a page-oriented heap layout similar to PHK-
malloc, but collocates large objects in contiguous regions to
minimize page-internal fragmentation.

No object headers for small objects: Vam reduces cache pollution
by eliminating object headers for all objects under 128 bytes.

Reap allocation: Vam uses a variant of reap allocation in each
page both to improve throughput and to enhance cache lo-
cality.

Ordered per-size allocation: Vam maintains non-full pages for each
small or medium size sorted in the order in which the pages
become non-full. This ordering allows new objects to fill the
free space in the front, improving locality. It also increases
the likelihood that empty pages emerge from the end.

Aggressive discarding of empty pages: Whenever a page is made
empty, Vam gives it back to the virtual memory manager.

3.1 Fine-Grained Size Classes
Like DLmalloc, Vam classifies object sizes into four categories:
small (below 128 bytes), medium (between 128 and 496 bytes),
large (between 504 bytes and 32KB), and extremely large (more
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Figure 1: An example of Vam’s heap layout (see Section 3).

than 32KB). These size boundaries are tunable parameters in the
allocator.

Vam uses very fine-grained size classes for all small, medium
and large objects – each size class is only 8 bytes apart. A free list
table stores pointers to linked lists of the free space for each size
class. Since Vam manages objects of each size category rather dif-
ferently, we discuss the algorithms in detail below. Vam directly
allocates extremely large objects from the kernel via the mmap sys-
tem call and frees them using munmap.

Small and Medium Objects
Small and medium objects are allocated from segregated page blocks,
groups of pages dedicated to each size class. Each page block is di-
vided into equal-sized objects. The size of the page block is one
page for small objects. For medium objects, it is four pages. This
increased number of pages reduces page-internal fragmentation at
the end of the block [1].

Page blocks of each size class are maintained in two linked lists.
The available list contains page blocks with free space, while the
full list contains page blocks with no remaining space. If the avail-
able list for a particular size is empty and a new allocation request
arrives, Vam creates a new page block for that size which it adds to
the available list.

Vam’s fine-grained size classes (8 bytes apart) and exact-fit al-
location eliminate internal fragmentation for small and medium
objects, since the C standard requires that all objects returned by
malloc be double-word (8-byte) aligned. Reducing fragmenta-
tion for these objects is important for improving overall cache uti-
lization because most objects are small or medium-sized. In our
benchmarks, 89.6% of all objects allocated are small (33.1% of
space requested) and 6.4% are medium-sized (3.2% of space re-
quested).

Nonetheless, using coarser size classes can also improve locality
of reference. A wider size range in each size class allows quicker
reuse of free space across these sizes, which may result in im-
proved cache locality and page-level locality. In fact, we observe
this phenomenon in the 253.perlbmk benchmark (see Sections 4.3
and 4.5).

Large Objects
As with small and medium objects, large object size classes are
also only 8 bytes apart and each size class has a dedicated free
list. Pointers to these free lists are also put into the free list table
indexed by the sizes. Vam uses a best-fit algorithm for large objects.
It linearly searches the free list table for the first non-empty list
containing a free object large enough to satisfy the requested size.
If the remaining space of the object is large enough to hold the
smallest large object (i.e., 504 bytes), Vam splits the object and
places the remaining space onto an appropriate free list.

This use of fine-grained size classes for large objects improves
allocator-level locality. Because each size class provides an exact
fit, no search within the size class is needed for a best fit. This can
improve locality because such a search (as in DLmalloc) may visit
several free objects before it finds a best fit and these free objects
may be scattered in memory and have poor locality [9]. Vam only
scans the free list table, which is a contiguous space and has good
locality. However, this linear scan may occasionally visit a large
number of table entries and flush caches. It is possible to solve this
problem by hierarchically indexing into the table, but we have not
implemented this optimization.

Allocation requests for large objects are rare and often have poor
size locality. For example, applications may allocate large buffers
of varied lengths corresponding to file inputs. Our use of a large
number of size classes, however, does not lead to excessive exter-



nal fragmentation because Vam collocates large objects in memory
regions (by default, 20 pages) shared by all these sizes and imme-
diately coalesces freed objects. This aggressive coalescing greatly
reduces fragmentation, and for these large objects, the per-byte cost
for this coalescing is low.

Collocating large objects in shared memory regions may have
another beneficial impact because it tends to align them randomly,
thus reducing conflict misses. For example, a program may fre-
quently access a particular field of a number of large objects. When
objects are always aligned similarly, as in PHKmalloc, accesses to
this field will always conflict in the cache. By avoiding fixed ob-
ject alignment, Vam reduces the likelihood of this sort of conflict
misses.

3.2 Page-Based Heap Management
Vam allocates small and medium-sized objects from segregated
page blocks and large objects from memory regions, which are also
multiples of pages. A page manager manages all these pages by
recording the status information for each page in a page descriptor
table and keeping consecutive free pages in a set of free lists.

We note that, in principle, segregating objects of different sizes
could harm locality by preventing adjacent allocation of temporally-
local objects of different sizes. This potential cost must be weighed
against the locality and space benefit of eliminating external frag-
mentation. Wilson and others have observed a strong skew towards
a small number of size classes, increasing the odds that temporally-
local objects will be of the same size [12, 22].

3.3 Elimination of Object Headers for Small Objects
Vam uses the BIBOP technique to eliminate individual object head-
ers only for small objects, where the resulting space savings and lo-
cality improvement are the most significant. All larger objects have
per-object headers, simplifying deallocation and coalescing. To
distinguish these two cases, Vam partitions the entire address space
into 16MB areas and only allows homogeneous objects to be allo-
cated in the same area. Vam uses a table that records whether ob-
jects in each area have headers. Because a one-byte flag is enough
to hold the information for each area, only 256 bytes are needed to
manage a 4GB address space. Although every object deallocation
needs to perform a conditional check on the corresponding entry
in this table, these checks have very good locality and the branch
is highly predictable since most objects are small and do not have
headers.

3.4 Reap Allocation
Unlike PHKmalloc, Vam does not use per-block bitmaps to track
which objects are allocated or free in a page block. Instead, it
uses a cheaper pointer-bumping allocation until the end of the page
block is reached. It then reuses objects from a free list for that
page block. This technique is a variant of the reap allocation as dis-
cussed in Section 2.3. The original reap algorithm adds per-object
headers and employs a full-blown heap implementation to manage
freed objects. Vam instead manages its (headerless) free objects by
threading a linked list through them; the current release of Hoard
(version 3.2.2) uses a similar strategy. Vam’s use of a single size
class per page block ensures that this approach does not lead to
external fragmentation. Pointer-bumping allocation also improves
cache locality by preserving allocation order.

3.5 Ordered Per-Size Allocation
To minimize page faults, Vam preferentially allocates small and
medium objects from recently-accessed page blocks. It allocates
from the first block in the available list until the block becomes
full. It then moves the block to the full list and uses the next block

176.gcc 197.parser 253.perlbmk 255.vortex
Execution Time 24s 275s 43s 62s

Instructions (billion) 40 424 114 102
VM Size 130MB 15MB 120MB 65MB

Max Live Size 110MB 10MB 90MB 45MB
Total Allocations 9M 788M 5.4M 1.5M

Alloc. Rate (#/sec) 373K 2813K 129K 30K
Avg. Size (bytes) 52 21 285 471

Table 1: CPU and memory allocation statistics of memory-
intensive SPECint2000 benchmarks, run with DLmalloc.

in the available list, creating one if none exists. Vam places freed
objects onto the appropriate per-block free list for reuse. When an
object is freed to a previously-full page block, Vam moves it from
the full list to the front of the available list. PHKmalloc uses a
similar approach, but sorts non-full pages in an increasing address
order. We do not sort the page blocks because it can be costly.

Page-level ordering ensures that new objects always fill free space
in the page block in the front of the available list. Objects in an al-
location sequence are then likely to be placed in a small number of
pages, improving page-level locality. This ordered allocation also
increases the chance that pages near the end become entirely free.

3.6 Aggressive Discarding of Pages
When a page becomes empty, Vam uses the madvise call to dis-
card it, thus reducing the application’s virtual memory footprint.
For regions of large objects, Vam discards those pages entirely
within a freed object, that is, excluding per-object metadata.

Discarding empty pages from individual applications to the ker-
nel can reduce system-wide memory pressure, benefiting either the
application itself or other applications in the system. However, ag-
gressive page discarding does add some runtime overhead. Each
discard requires a system call. When the page is later reused, there
is a cost in reassigning a physical page to the free page in the kernel
(soft page fault handling and page zeroing). When weighed against
the penalty caused by paging, these overheads are low. Ideally, we
would discard pages only in response to memory scarcity, but we
have not yet explored this possibility.

4. Experimental Evaluation
To evaluate the efficacy of Vam’s design, we sought to answer the
following questions: can Vam reduce total application execution
time, increase cache-level locality, maintain low fragmentation, and
reduce paging when under memory pressure?

We evaluate Vam’s with four memory-intensive applications from
the SPEC CPU2000 benchmark suite [19]: 176.gcc, 197.parser,
253.perlbmk, and 255.vortex. The other benchmarks in the suite
either use very little memory or only allocate a few memory buffers
at the start of execution [20], so for those applications, the choice
of allocator has essentially no impact. Whenever multiple inputs
were available, we use the reference input that consumes the most
memory. These are scilab.i, ref.in, splitmail.pl 850 5 19 18 1500,
and lendian1.raw, respectively. Table 1 summarizes the CPU and
memory allocation statistics of the benchmarks.

The original 176.gcc and 197.parser applications use custom
memory allocators. 176.gcc uses obstacks and 197.parser uses
a custom allocator called xalloc [5]. The use of custom allocation
means that the original applications make only occasional calls to
malloc. We modified these applications to use general-purpose
memory allocators. This modification is trivial for 197.parser be-
cause its custom allocator has the same interface and semantics as
malloc and free. Replacing xalloc actually decreases the max-
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Figure 2: Total execution time, normalized to DLmalloc.

imum virtual memory usage of 197.parser from 30MB to 15MB.
Replacing the obstack allocator in 176.gcc is more complicated
since it has a different interface and semantics than the general-
purpose memory allocator. To replace it, we use an obstack layer
that directly invokes malloc for individual objects [5]. This layer
requires additional metadata and thus increases 176.gcc’s peak
memory usage from 85MB to about 130MB.

We use a Dell Optiplex SX270 as our experimental platform
(3.0GHz Pentium 4, 1GB RAM, 40GB 5400RPM hard drive, Linux
version 2.4.24). The Pentium 4 has an 8KB L1 data cache (64-
byte cache lines, 4-way set-associative) and a 512KB L2 cache
(64-byte cache lines, 8-way set-associative). All memory alloca-
tors are compiled into shared libraries at the highest optimization
level with gcc version 3.2.2 and preloaded into memory before the
applications via LD PRELOAD.

We measure total execution time using /usr/bin/time, and
measure instructions retired, L1/L2 cache misses, and data TLB
misses using the Pentium 4’s on-chip performance counters. We
use the perfctr patch for Linux and the perfex tool [17] to set the
performance counters according to the manufacturer’s manual [11].
We run each experiment five times with the machine in single-user
mode and report the mean. The mean deviations in the results are
below 1%.

4.1 Total Execution Time
Figure 2 presents the total execution times normalized to DLmal-
loc. Vam consistently improves application performance over both
PHKmalloc and DLmalloc. Vam’s improvement over PHKmal-
loc ranges from 1–8%, and improves over DLmalloc by 1–23%.
On average, Vam is 4% and 8% faster than PHKmalloc and DL-
malloc, respectively. The custom memory allocators in 176.gcc
and 197.parser are faster than the general-purpose ones: the ob-
stack allocator in 176.gcc is 8% faster than DLmalloc and the
xalloc allocator in 197.parser is 23% faster. The custom alloca-
tors improve performance of these two benchmarks because both
benchmarks are very allocation intensive (see Table 1). In fact,
197.parser is so allocation-intensive that the number of cycles ex-
ecuted by the allocator dictates its performance. We attribute the
difference between this result and that obtained by Berger et al. [5]
(showing a smaller gap between DLmalloc and xalloc) to the dif-
ferent compiler infrastructure and to our use of shared objects for
the allocators, which precludes link-time optimizations.

4.2 Cache Locality
We measure both L1 and L2 cache locality for the different al-
locators. Figure 3(a) shows L1 cache misses normalized to DL-
malloc. Vam reduces L1 cache misses for two of the four bench-
marks. This result is due to Vam’s reduction of internal fragmen-

Variant Description
PHK sc size classes every 8 bytes instead of 2x

PHK reap replaces bitmap operations with reap al-
location [5]

PHK sc reap combines PHK sc and PHK reap
Vam small+header adds 8-byte headers to small objects
Vam bitmap replaces reap allocation with bitmap op-

erations for small and medium objects

Table 2: Variants of PHKmalloc and Vam (see Section 4.3).

tation and elimination of object headers (see Section 4.3). How-
ever, Vam significantly increases L1 cache misses for one bench-
mark, 253.perlbmk. This benchmark allocates from a wide range
of sizes, and Vam’s use of fine-grained size classes causes more
cache traffic than DLmalloc. This result is somewhat misleading:
253.perlbmk’s L1 cache miss rate is low for all allocators, and so
has little impact on total execution time.

PHKmalloc increases L1 cache misses in three of the four bench-
marks. This increase is due to internal fragmentation caused by
PHKmalloc’s coarse size classes (also see Section 4.3). PHKmal-
loc reduces L1 cache misses for only one benchmark, 197.parser.
It primarily allocates small objects (8, 16 and 24 bytes). These ob-
jects fit into PHKmalloc’s power-of-two size classes with little frag-
mentation, and the lack of object headers leads to efficient cache
line utilization both for PHKmalloc and for Vam.

Unlike their effect on L1 cache misses, both Vam and PHKmal-
loc significantly reduce L2 cache misses, as Figure 3(b) shows.
On average, Vam reduces L2 cache misses by 39% over DLmal-
loc. This cache-level locality improvement is more significant in
253.perlbmk and 255.vortex than in 176.gcc and 197.parser.
For 176.gcc, the obstack allocator produces the fewest cache misses.
This result is partially due to the extra metadata required to simu-
late obstack semantics. Unlike L1 locality, the L2 cache perfor-
mance here is strongly correlated to application run time perfor-
mance. However, PHKmalloc’s locality improvement is offset by
its excessive number of instructions, particularly in 197.parser.
We also measured data TLB misses; these exhibit nearly identical
trends, so we do not report them here.

Summary: Vam generally provides better L1 cache locality than
the other allocators. The use of a page-oriented heap layout im-
proves L2 cache locality for both PHKmalloc and Vam, although
Vam’s improvement is somewhat greater.

4.3 Performance of Allocator Variants
To evaluate the effects of Vam’s design decisions, we developed
several variants of both PHKmalloc and Vam, summarized in Ta-
ble 2. These variants let us quantify the impact of the choice of
fine-grained size classes, reap-based allocation and object header
elimination. Figures 4 and 5 present the L2 cache misses, instruc-
tion counts and run time performance of these PHKmalloc and Vam
variants. We do not show the L1 cache misses as they exhibit nearly
identical trends as the L2 results. Note that all results are normal-
ized to their respective original versions, e.g., PHKmalloc variants
are normalized to PHKmalloc.

Impact of Size Classes and Reaps: PHKmalloc
As Figure 4(a) shows, PHK sc (fine-grained size classes) reduces
cache misses in three of the four benchmarks. The exception is
253.perlbmk, which uses more object sizes than the other bench-
marks. The coarser size classes in the original PHKmalloc allow
quicker reuse of freed space within each size class, yielding bet-
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Figure 3: Cache-level locality results.
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Figure 4: Comparison of PHKmalloc variants, normalized to the original.
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Figure 5: Comparison of Vam variants, normalized to the original.

ter cache locality. Although PHK sc’s changes in cache misses do
not notably affect the overall run times shown in Figure 4(c), it
greatly improves the space efficiency over the original allocator and
achieves better VM performance when under memory pressure.

PHK reap (replacing bitmap operations with reap allocation) re-
duces instructions executed by 14% for 197.parser and runs 10%
faster than the original PHKmalloc. On average, this variant im-
proves application performance by 3%. However, because this
modification adds extra memory accesses, it also increases cache
misses for most of the benchmarks except 255.vortex. This in-
crease is the greatest for 253.perlbmk. However, because the ab-
solute number of cache misses is small for 253.perlbmk, these
extra misses do not affect run time.

The PHK sc reap variant, combining the changes in PHK sc and
PHK reap, shows that these improvements are generally comple-
mentary. On average, PHK sc reap improves run time performance
by 4%. It noticeably reduces cache misses in 197.parser and
255.vortex and instructions in 176.gcc and 197.parser.

Impact of Headers and Bitmaps: Vam
Figures 5(a) and 5(c) show that adding headers to the small objects
in Vam results in an average increase in L2 cache misses of 15%
and a 3% increase in run times. The impact of adding headers is the
greatest for 197.parser, increasing run time by 10%. The average
object size in 197.parser is only 21 bytes and the extra headers
substantially increase its working set.

Figure 5(b) shows that Vam bitmap significantly increases the
number of instructions executed in 197.parser. On average, this
variant reduces L2 cache misses by 2% and increases the instruc-
tions by 2%, resulting in a 2% increase in run time.

Summary: The use of fine-grained size classes and elimination of
object headers generally improve cache locality and reduce total
runtime. The choice between bitmap operations and reap-like allo-
cation is a trade-off. Vam currently uses reaps, but trading CPU in-
structions for fewer memory accesses during allocation may even-
tually prove more beneficial.
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Figure 6: Fragmentation results.

4.4 Fragmentation
We next evaluate the effect of allocator design on memory fragmen-
tation. Our measurement of fragmentation is derived from Wilson
and Johnstone [13], who measure the amount of memory used by
the allocator relative to the live data of the application. However, to
better evaluate the space efficency of memory allocators, we refine
the measurements of the application’s live data and memory us-
age. Unlike Wilson and Johnstone, we measure the amount of live
data as only that requested by the application, not including any
space overhead imposed by the allocator implementation (e.g., ob-
ject headers). We then measure the application’s memory usage by
tracking the number of pages in use. In use pages are those mapped
from the kernel and touched, but not discarded. Pages mapped
but never touched do not have physical space allocated; discarded
pages have their previously-allocated memory reclaimed, thus do
not consume any physical space. This view of application memory
usage is from the VM manager’s perspective and more accurately
reflects the actual resource consumption.

We compare four allocators here: DLmalloc, PHKmalloc, Vam
and the PHK sc variant of PHKmalloc. Figure 6 shows the appli-
cation’s maximum number of pages in use divided by its maximum
live data (in pages). We were surprised to see that DLmalloc, an
allocator known for low fragmentation, in fact leads to the highest
fragmentation on average. One reason for this is the space over-
head of the per-object headers. More importantly, DLmalloc is un-
able to distinguish and discard any free pages it may have. This
limitation of DLmalloc makes it possible for its free pages to oc-
cupy physical memory even when the system is under heavy mem-
ory pressure. PHKmalloc overcomes both of these shortcomings.
However, its coarse size classes lead to internal fragmentation that
negates its other advantages. Our PHK sc variant uses fine-grained
size classes and on average, yields the lowest fragmentation (under
10%). Vam combines these fragmentation-reducing features and
nearly matches PHK sc’s low fragmentation.

4.5 Performance While Paging
The memory allocator’s impact on space consumption and data lo-
cality is especially significant when the system is under memory
pressure. If the application’s footprint can not fit into available
RAM, its performance will start to degrade because of paging. This
performance degradation can be severe if the application’s page-
level locality is poor. To evaluate the application performance while
paging, we launch a process that pins down a specified amount of
RAM, leaving the desired amount available for the application.

Figure 7 shows the run times of the four SPEC benchmarks un-
der a range of available RAM sizes, using different memory allo-
cators. The rightmost point of each line shows the run time of the

application with sufficient RAM to run without paging. As avail-
able memory is reduced (moving left), application performance de-
grades. This performance degradation is markedly different with
different memory allocators, except for 176.gcc, where all the al-
locators degrade similarly with reduced RAM (Figure 7(a)). Of
the general-purpose allocators, Vam delivers the best performance
across a wide range of available RAM.

Recall that for 176.gcc, we needed to add extra metadata to sim-
ulate the obstack semantics with general-purpose allocators. The
original obstack allocator thus performs better than the general-
purpose allocators when RAM is scarce. Nonetheless, all of the
general-purpose allocators similarly preserve application locality
because of the clustered allocations and deallocations in 176.gcc.
The slight difference between these allocators is largely due to their
respective space efficiency, for which the original obstack custom
allocator is the best.

The story is different for the other custom allocator. As Fig-
ure 7(b) shows, 197.parser’s custom allocator (xalloc) requires
substantially more RAM to avoid paging and performs much worse
than the general-purpose allocators as available RAM is reduced.
This poor performance is due to a limitation in xalloc. Unlike the
general-purpose allocators, xalloc can not reuse heap space imme-
diately after objects are freed. Instead, it must wait until consec-
utive objects at the end of the heap are all free, at which point it
reuses memory from after the last object in use. While this strat-
egy is effective when physical memory is ample, under memory
pressure, it degrades performance dramatically.

Figure 7(c) and Figure 7(d) highlight the effectiveness of both
PHKmalloc’s and Vam’s page discarding algorithms. DLmalloc
suffers a 5x slowdown when available physical memory is reduced
to just below 80MB for 253.perlbmk, while PHKmalloc and Vam
run at the same speed with just 30 to 40MB. With both of those allo-
cators, 253.perlbmk exhibits a more graceful performance degra-
dation than when using DLmalloc. For 255.vortex, Vam performs
better than the other two allocators over all available RAM sizes
we tested. DLmalloc required about 6MB more available RAM to
achieve Vam’s performance. Only the page discarding algorithms
play a role here: 255.vortex’s average object size is 471 bytes, so
DLmalloc’s 8-byte object headers have little impact.

Note that, for 253.perlbmk, PHKmalloc degrades performance
slightly less than Vam when available RAM is less than 60MB.
This relative improvement for PHKmalloc is because its coarse size
classes improve the locality of this particular benchmark. When
running 253.perlbmk with PHK sc (with fine-grained size classes),
we find that the performance degradation curve is then very close
to that of Vam across all memory sizes.

4.6 Page-Level Locality
In this section, we explore the effect of the allocator’s page-level
locality on the application’s virtual memory performance in more
detail by using an LRU simulator and a prefetching simulator. Ap-
proximate LRU page replacement and swap disk prefetching are
two commonly used components in many VM managers, including
the one in Linux.

LRU Simulation
We first gather application page-level references into the heap us-
ing a tool that intercepts system memory calls (brk, sbrk, mmap,
munmap, and madvise) to keep track of heap pages currently
mapped from the kernel and traps memory references by page pro-
tection. We use the SAD (Safely-Allowed-Drop) algorithm to re-
duce the trace to a manageable size [15].

We then run these traces through an LRU simulator to generate
page miss curves that indicate the number of misses (page faults)



 0

 50

 100

 150

 200

 0  20  40  60  80  100  120

ru
n 

tim
e 

(s
ec

)

available RAM (MB)

176.gcc

DLmalloc run time
PHKmalloc run time

Vam run time
obstack run time

(a) 176.gcc

 0

 500

 1000

 1500

 2000

 0  5  10  15  20  25  30

ru
n 

tim
e 

(s
ec

)

available RAM (MB)

197.parser

DLmalloc run time
PHKmalloc run time

Vam run time
xalloc run time

(b) 197.parser

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140

ru
n 

tim
e 

(s
ec

)

available RAM (MB)

253.perlbmk

DLmalloc run time
PHKmalloc run time

Vam run time

(c) 253.perlbmk

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 30  35  40  45  50  55  60  65  70

ru
n 

tim
e 

(s
ec

)

available RAM (MB)

255.vortex

DLmalloc run time
PHKmalloc run time

Vam run time

(d) 255.vortex

Figure 7: Performance using different memory allocators over a range of available RAM sizes.
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Figure 8: Simulated page miss curves ignoring prefetching versus actual major page faults in a real system with prefetching.

that would arise for every possible size of available memory. Our
LRU simulator is similar to that described by Yang et al. [23].
We use placeholders in the LRU queue for pages discarded by
madvise or unmapped by munmap/sbrk. These placeholders
allow us to more accurately approximate a real VM manager.

We compare the miss curves generated from the simulator with
the actual number of page faults. Actual page faults are the major
(hard) page faults measured in the experiments we describe in Sec-
tion 4.5. For two of our benchmarks, 197.parser and 255.vortex,
the simulated miss curves are nearly the same as the actual page
faults (except for the xalloc custom allocator in 197.parser).

However, for 176.gcc and 253.perlbmk, the actual page faults
are far fewer than the simulated ones, as Figure 8 shows. For

example, for 176.gcc with 40MB of RAM, the simulated faults
are around 40,000 while the actual page faults measured are under
10,000. The is due to the swap prefetching employed by the Linux
VM manager but not in our LRU simulator. To verify this, we turn
off prefetching in Linux, and re-run the paging experiments. The
actual number of page faults then closely matches the simulated
results for all benchmarks and allocators.

Prefetching Simulation
As Figure 8 shows, swap disk prefetching can significantly reduce
page faults. The effectiveness of prefetching is determined by the
locality of page misses on the swap disk. If page misses require
contiguous pages on the swap disk to be swapped in, prefetching
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Figure 9: Swap prefetchability: each bar shows simulated
prefetchable misses (top) and non-prefetchable misses (bot-
tom).

will be effective. Page allocation on the swap disk is managed by
the VM manager. The Linux VM manager (particularly in the 2.4
kernels) attempts to cluster pages that are adjacent in virtual ad-
dress space to store them contiguously on disk [6]. For this reason,
the application’s page-level locality also affects the effectiveness of
prefetching in the kernel when the system is paging.

We measure the application’s swap prefetchability by simulating
the Linux swap prefetching, assuming a strict address-preserving
mapping from the application’s address space to the swap disk. We
gather the application’s page references that would result in a miss
for a given memory size in the LRU simulation and feed this page
miss trace to our prefetching simulator. The simulator maintains a
buffer of the last 256 pages prefetched from disk. A page miss is
prefetchable if it is in the buffer; otherwise, it is non-prefetchable.
A prefetchable miss causes the page to be removed from the buffer
while a non-prefetchable miss causes adjacent pages in the group
of 8 to be prefetched from swap disk into the buffer, replacing the
oldest pages if the buffer is full. Subsequent page misses on these
still in the buffer are therefore prefetchable.

Figure 9 presents our swap prefetchability results for different
allocators with specific memory sizes noted on the figure. For
176.gcc and across all allocators, more than 80% of the misses
are prefetchable. This prefetchability is due to 176.gcc’s strong
locality in its obstack-style memory allocation. The original ver-
sion of 197.parser (using xalloc) also exhibits great prefetcha-
bility (81% prefetchable). Vam nearly matches this prefetchabil-
ity (79% prefetchable) while the other two general-purpose allo-
cators result in less prefetchability. With PHKmalloc and Vam,
253.perlbmk has few non-prefetchable misses – as many as 80%
of the misses are prefetchable. However, its prefetchability is much
less with DLmalloc (only 55% prefetchable). This result demon-
strates that 253.perlbmk’s data locality is better preserved by PHK-
malloc and Vam than by DLmalloc.

255.vortex has much less prefetchability than the other appli-
cations: about 45% of the misses are non-prefetchable with VAM,
52% with PHKmalloc, and 60% with DLmalloc. In fact, 255.vor-
tex’s poor page-level locality is also reflected in the steep VM per-
formance degradation curves in Figure 7(d) and simulated miss
curves. This occurs either because 255.vortex’s data locality is
instrinsically poor or because it is not well preserved by any of the
allocators.

Note that this prefetchability model assumes ideal swap page
placement. The real VM manager may not be able to prefetch all
the prefetchable misses. Nevertheless, our model appears to re-
flect observed application VM performance on a real system. We

attribute the improved prefetchability in PHKmalloc and Vam to
their page-oriented design and ordered allocation at the page level.

5. Related Work
There has been extensive research on dynamic memory allocation.
In their well-known survey paper, Wilson et al. devote most of their
attention to the question of fragmentation, which they identify as
the most important metric for evaluating memory allocators [22].
Johnstone and Wilson in their subsequent studies evaluate a wide
range of allocation policies using actual C/C++ programs and claim
that fragmentation is near zero, given a good choice of allocation
policy [12, 13]. While they argue that reducing fragmentation gen-
erally improves locality, we show that Vam’s approach is more ef-
fective.

Most previous researchers have attacked the problem of locality
in memory allocation either by improving the locality of the allo-
cator itself or by using extra information such as programmer hints
or profiles to guide placement decisions. Grunwald and Zorn in-
vestigate the locality impact of allocation algorithms by simulating
caches using reference traces [9], and conclude that sequential-fit
search schemes are the primary culprit for poor allocator locality.
Their benchmark suite is highly allocation-intensive, causing lo-
cality effects in the allocator to dominate. Vam’s algorithms focus
instead on the effect of allocator data layout decisions on the ap-
plication’s overall locality, rather than on locality within the allo-
cator. Our benchmark suite of memory-intensive programs is also
less allocation-intensive, emphasizing the impact of allocator lay-
out policies.

Chilimbi et al. describe ccmalloc, a memory allocator that
allows the programmer to help the allocator group objects with
temporal locality [8]. Truong et al. describe a memory alloca-
tor that separates the hot and cold fields of objects into different
cache lines [21]. Both of these approaches improve cache-level
locality but require programmer intervention. Vam’s approach is
largely orthogonal. Its use of the standard malloc interface al-
lows it to be used to improve the locality of unaltered programs.
It should be possible to build custom locality-improving allocators
like ccmalloc on top of Vam, but we do not investigate that pos-
sibility here.

Barrett and Zorn use a profile-based approach that predicts ob-
ject lifetime at allocation time and segregates short-lived objects
from long-lived objects in the heap [2]. Their system improves
locality and space efficiency while reducing allocation cost, but
requires profiling and imposes runtime overhead. Zorn and Seidl
extend this approach by incorporating the reference behavior and
lifetime prediction gathered during profiling to guide memory al-
location and improve virtual memory performance [18, 24]. Their
method also imposes modest runtime overhead. Vam’s approach
avoids the need for profiling and improves application performance
both in the presence and absence of virtual memory paging.

6. Conclusions
Because of its determining role in creating spatial locality, dynamic
memory allocation can have a significant impact on performance.
We present Vam, a memory allocator that improves application lo-
cality and performance both at the cache level and at the virtual
memory level. We explore the impact of Vam’s design decisions
and find that its fine-grained size classes, reap-like allocation, ob-
ject header elimination, and page-oriented design all contribute to
its effectiveness. Our experiments show that Vam can improve
the performance even of relatively non-allocation-intensive appli-
cations.
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