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Evolutionary genomics has recently entered a new era in the study of host-pathogen
interactions. A variety of novel genomic techniques has transformed to the identiûcation,
detection and classiûcation of both hosts and pathogens, allowing a greater resolution that
helps decipher their underlying dynamics and provides novel insights into their
environmental context. Nevertheless, many challenges to a general understanding of host-
pathogen interactions remain, in particular in the synthesis and integration of concepts
and ûndings across a variety of systems and diûerent spatiotemporal and ecological
scales. In this perspective we aim to highlight some of the commonalities and complexities
across diverse studies of host-pathogen interactions, with a focus on ecological,
spatiotemporal variation, and the choice of genomic methods used. We performed a
quantitative review of recent literature to investigate links, patterns and potential tradeoûs
between the complexity of genomic, ecological and spatiotemporal scales undertaken in
individual host-pathogen studies. We found that the majority of studies used whole
genome resolution to address their research objectives across a broad range of ecological
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scales, especially when focusing on the pathogen side of the interaction. Nevertheless,
genomic studies conducted in a complex spatiotemporal context are currently rare in the
literature. Because processes of host-pathogen interactions can be understood at multiple
scales, from molecular-, cellular-, and physiological-scales to the levels of populations and
ecosystems, we conclude that a major obstacle for synthesis across diverse host-pathogen
systems is that data are collected on widely diverging scales with diûerent degrees of
resolution. This disparity not only hampers eûective infrastructural organization of the data
but also data granularity and accessibility. Comprehensive metadata deposited in
association with genomic data in easily accessible databases will allow greater inference
across systems in the future, especially when combined with open data standards and
practices. The standardization and comparability of such data will facilitate early detection
of emerging infectious diseases as well as studies of the impact of anthropogenic
stressors, such as climate change, on disease dynamics in humans and wildlife.
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42 Abstract

43 Evolutionary genomics has recently entered a new era in the study of host-pathogen 

44 interactions. A variety of novel genomic techniques has transformed to the identification, 

45 detection, and classification of both hosts and pathogens, allowing a greater resolution that 

46 helps decipher their underlying dynamics and provides novel insights into their environmental 

47 context. Nevertheless, many challenges to a general understanding of host-pathogen 

48 interactions remain, in particular in the synthesis and integration of concepts and findings across 

49 a variety of systems and different spatiotemporal and ecological scales. In this perspective, we 

50 aim to highlight some of the commonalities and complexities across diverse studies of host-

51 pathogen interactions, with a focus on ecological, spatiotemporal variation, and the choice of 

52 genomic methods used. We performed a quantitative review of recent literature to investigate 

53 links, patterns and potential tradeoffs between the complexity of genomic, ecological and 

54 spatiotemporal scales undertaken in individual host-pathogen studies. We found that the 

55 majority of studies used whole-genome resolution to address their research objectives across a 

56 broad range of ecological scales, especially when focusing on the pathogen side of the 

57 interaction. Nevertheless, genomic studies conducted in a complex spatiotemporal context are 

58 currently rare in the literature. Because processes of host-pathogen interactions can be 

59 understood at multiple scales, from molecular-, cellular-, and physiological-scales to the levels 

60 of populations and ecosystems, we conclude that a major obstacle for synthesis across diverse 

61 host-pathogen systems is that data are collected on widely diverging scales with different 

62 degrees of resolution. This disparity not only hampers effective infrastructural organization of 

63 the data but also data granularity and accessibility. Comprehensive metadata deposited in 

64 association with genomic data in easily accessible databases will allow greater inference across 

65 systems in the future, especially when combined with open data standards and practices. The 

66 standardization and comparability of such data will facilitate early detection of emerging 

67 infectious diseases as well as studies of the impact of anthropogenic stressors, such as climate 

68 change, on disease dynamics in humans and wildlife.

69

70 Subjects: Biodiversity, Ecology, Evolutionary Studies, Genomics, Zoology
71
72 Keywords: Plasmodium, MHC, immunotoxins, mucus, natural selection, GWAS, infectious 
73 diseases, anthropogenic stressors, co-evolution, epidemiological surveillance
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74 Introduction

75 Pathogens are widely agreed to be among the strongest agents of natural selection in nature, 

76 and their influence on the genomes of host species is often readily detectable (Kosiol et al., 

77 2008; Enard et al., 2016; Quach et al., 2016; Shultz & Sackton, 2019). With the advent of rapid 

78 DNA sequencing technologies, genetic studies of host-pathogen interactions have moved from 

79 single gene perspectives to genome-wide approaches interrogating whole genomes of hosts 

80 and/or pathogens. At the same time, these studies have begun to tackle an increasingly diverse 

81 array of systems in both the field and laboratory, and have expanded from analysis of single 

82 pathogens to multiple pathogens under a variety of conditions. Environmental factors and gene-

83 by-environment interactions, such as those beginning to be studied in microbiome research 

84 (Libertucci & Young, 2019), are increasingly appreciated as important in modulating the severity 

85 and fitness consequences of infections (Sekirov et al., 2010; Kamada et al., 2013; Villarino et 

86 al., 2016; Chomwong et al., 2018). As genomic approaches become increasingly accessible 

87 and affordable, it is becoming clear that the limiting factor in host-pathogen research is often not 

88 the technical aspects of sequencing pathogens or host genomes, but rather the ecological, 

89 immunological and epigenetic context in which genomic data are embedded (Kratochwil & 

90 Mayer, 2015). To mention one example, post-translational modifications of proteins in the 

91 mucus are known to play critical roles in pathogen defense in addition to genetic factors (Linden 

92 et al., 2008). 

93  

94 Host-pathogen studies encompass an extraordinary variety of temporal and spatial 

95 scales, including wide ranges of ecological settings and pathogen complexities - such as 

96 experimental versus field studies or single versus multiple pathogens - as well as genomic 

97 complexities, ranging from candidate gene studies to whole genome scans (Fig. 1A). Any single 

98 study can be classified according to these scales, with concomitant benefits and deficiencies in 

99 capturing the details of host-pathogen interactions in the real world. For example, studies aiming 

100 to link the evolution of host and pathogen genomes and to detect genomic signatures of host-

101 pathogen interactions have arisen from searches for associations with single host candidate 

102 genes, such as genes of the major histocompatibility complex (MHC) (Hill et al., 1991; Kaslow et 

103 al., 1996; Wegner, Reusch & Kalbe, 2003; Meyer-Lucht & Sommer, 2005; Savage & Zamudio, 

104 2011), to genome-wide scans for associations with resistance or susceptibility (e.g., (Fumagalli 

105 et al., 2011; Bartha et al., 2013). We now have genomic insights into host-pathogen interactions 

106 that stem from field studies investigating temporal and spatial patterns (Hill et al., 1991; Savage 

107 & Zamudio, 2011; Penczykowski, Laine & Koskella, 2015; Bourgeois et al., 2017); to 
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108 experimentally evolving populations or ancient DNA studies encompassing hundreds or 

109 thousands of host generations (Bos et al., 2011; Cairns et al., 2017; Tso et al., 2018; Spyrou et 

110 al., 2019); to phylogenetic and comparative studies spanning tens of millions of years (Enard et 

111 al., 2016; Koonin, Makarova & Wolf, 2017; Shultz & Sackton, 2019). This variety makes it 

112 challenging to draw broad generalizations linking processes on different scales and to date, few 

113 syntheses have attempted to bridge the many temporal and spatial scales on which host-

114 pathogen studies take place.

115

116 In this perspective, we aim to address the complexities and commonalities of diverse 

117 studies of host-pathogen interactions through the lens of evolutionary genomics. We emphasize 

118 the wide range of approaches used recently and focus primarily on evolutionary responses of 

119 hosts to pathogens (Fig. 1). We first document the diversity of recent studies of host-pathogen 

120 interactions through a comprehensive analysis of the recent literature on the subject. This 

121 survey documents the sheer diversity of temporal and spatial scales on which host-pathogen 

122 studies are conducted, but also reveals that the heterogeneity of results across studies, from 

123 laboratory to field to experimental settings, poses a challenge for synthesis. Our survey 

124 identifies gaps in emphasis on research on host-pathogen interactions, but also reveals 

125 opportunities for discovering common principles and methodologies that are likely to drive the 

126 research field forward. We then review major themes in the study of interactions between hosts 

127 and pathogens in the wild. While daunting in terms of confounding variables, such studies 

128 provide opportunities for studying the synergistic effects of anthropogenic change and the 

129 evolutionary response to epizootics. At the same time, an increasing number of experimental 

130 studies that examine the effects of multiple interacting pathogens on their hosts, or of host 

131 microbiome on infection outcome, capture some of the reality of epizootics in nature. We 

132 conclude that the full promise of genomic and other -omics approaches to further our 

133 understanding of host-pathogen interactions will not be realized until these data are thoroughly 

134 and consistently embedded in high quality, consistent, and reproducible ecological and 

135 environmental metadata. Increased resolution of ecological metadata, smart databases that 

136 facilitate collaboration and comparisons across studies, and deposition of voucher specimens 

137 associated with specific studies in museum collections are just some of the ways in which 

138 genomic data can realize their full potential. These new tools will facilitate the application of 

139 knowledge of basic principles of host-pathogen interactions to real world problems affecting 

140 wildlife, endangered species, and ultimately human welfare.

141
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142 Survey methodology

143 This perspective piece is the result of discussions held during the <Origins of Biodiversity 

144 Workshop= organized during May 29 3 June 2, 2017 by Chalmers University of Technology and 

145 the University of Gothenburg, Sweden, under the auspices of the Gothenburg Centre for 

146 Advanced Studies (GoCAS). We gathered international scholars and students with 

147 interdisciplinary backgrounds to discuss future perspectives of the study of host-pathogen co-

148 evolution in the genomic era. During the workshop we identified major directions that have been 

149 enabled by advances in genomic techniques and in particular we highlight the resulting diversity 

150 of host-pathogen studies in their ecological, temporal and genomic detail at which they are 

151 studied. Our goal is not to provide a complete overview of the host-pathogen literature, but 

152 rather illustrate the diversity of research undertaken in the field and the associated challenges 

153 towards a comparable and inter-communicative understanding of causes and consequences of 

154 host-pathogen interactions across systems. To quantify currently studied dimensions (ecological 

155 complexity, spatiotemporal scope and genomic scale; Fig. 1A) of host-pathogen research we 

156 conducted a literature search on Web of Science (accessed August 30, 2018) with the following 

157 search query: (host-parasite* OR host-pathogen*) AND (genomic*). We refined the search hits 

158 by document type to include only articles, covering the publication years 2014-2018, and 

159 excluding studies with no genomic aspect. We scored 263 papers based on broadly defined 

160 categories for each scale defined in Table 1. The reference list and scoring results can be found 

161 in Supplementary Table 1. We used Spearman9s rho to assess the rank based association 

162 between scales and adjusted p-values for multiple testing (Benjamini & Hochberg, 1995).

163

164 Understanding the diversity of host-pathogen studies across 

165 genomic, ecological and spatiotemporal scales

166 We have outlined in the introduction that the published literature on host-pathogen interaction 

167 spans a diverse range of genomic, ecological and spatiotemporal scales. However, how the 

168 current published literature is distributed within this multidimensional space has not been 

169 mapped out (Fig. 1A). We thus first performed a literature search to classify and quantify the 

170 distribution of studies across these three scales. To understand the range of investigation at the 

171 genomic, ecological and spatiotemporal scale in recent studies on host-pathogen systems, and 

172 to discern where gaps in recent efforts might persist, we reviewed 263 studies of host-pathogen 

173 interactions published in the period between 2014-2018 (see Table 1 for scoring categories and 

174 Survey Methodology for specific details). A better understanding of the current placement of 
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175 host-pathogen studies should help us gain a better insight on how genomics can contribute to 

176 the understanding of host-pathogen interactions that are being studied from the perspectives of 

177 hosts or pathogens but also at such various level of biological detail.

178

179 We scored each study on three scales: genomic complexity, temporal and spatial 

180 complexity, and ecological complexity (Table 1). We found that high genomic resolution (mean 

181 score = 5.4 ± 2.1 SD, range = 1-7) at the level of the whole genome is employed to investigate 

182 questions that span the whole range of ecological scales, from theoretical to multi-species 

183 natural systems with environmental variability (mean score = 4.1 ± 2.4 SD, range = 1-9; Fig. 

184 1B). Investigations of pathogen genomics dominate the dataset, whereas genomic 

185 investigations of hosts are less common and more often examine a reduced representation of 

186 the genome, transcriptome, or proteome. Studies encompassing the interaction of both host and 

187 pathogens simultaneously are rare. Genomic techniques are rarely used to address complex 

188 spatiotemporal scales (mean score = 4.1 ± 2.3 SD, range = 2-11), such as throughout the 

189 geographical range of a species, or across multiple different species. (Fig. 1C). Intriguingly, with 

190 increasing ecological complexity in a study, more complex spatiotemporal scales are also 

191 addressed (Fig. 1D). However, only a few studies are classified as complex in terms of 

192 spatiotemporal setting: Across all studies, spatial (mean score = 1.6 ± 1.0 SD, range = 1-5) and 

193 temporal scores (mean score = 2.4 ± 1.7 SD, range = 1-6) are on average low. In particular, 

194 studies of complex spatial scales, such as interrogation across multiple populations across a 

195 species9 range, are virtually missing. 

196

197 The evaluation of published studies on host-pathogen systems not only reveals the 

198 expected recent increase in whole genome datasets for a broad range of host-pathogen studies, 

199 but also the gaps in addressing complex systems on ecological and spatiotemporal scales. 

200 Perhaps most critically, we suspect that the quantity and complexity of the sequence data in 

201 many recent and ongoing investigations of host-pathogen interactions pose increasing 

202 challenges for comparisons across studies. The lack of comprehensive cross-taxon comparative 

203 databases of host-pathogen interactions likely impedes the synthesis of individual host-

204 pathogen studies and translation of new knowledge into solutions for real world problems. In the 

205 real-world, (a) pathogens attack hosts in the context of changing host environments, (b) these 

206 environments are increasingly impacted by anthropogenic forces such as climate change, and 

207 (c) are usually characterized by diverse communities of pathogenic and non-pathogenic 
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208 organism. Our cross-section of recent studies of host-pathogen interactions suggests that these 

209 complexities are rarely captured in a single study.

210

211 Disentangling hidden histories in genes and genomes of hosts and 

212 pathogens

213 The pathogenic lifestyle is ubiquitous across the tree of life, and pathogens are estimated to 

214 represent a substantial proportion of the diversity and biomass of many ecosystems (Padra et 

215 al., 2018). The advent of high throughput sequencing has facilitated the discovery of numerous 

216 previously unknown pathogens and complex host-pathogen life histories, while metagenomic 

217 approaches have allowed for the classification of host- and pathogen-associated microbial 

218 communities, which have often been linked to successful pathogen infection and disease 

219 development (Sekirov et al., 2010; Kamada et al., 2013). This large increase in the number of 

220 observed pathogen strains and species along with associated microbes suggests that a 

221 pathogen rarely occurs alone, and instead may commonly be a member of a larger community 

222 (Robinson, Bohannan & Young, 2010; Schmid-Hempel, 2011; Gregory et al., 2019). Hence, 

223 understanding the interplay between multiple pathogens and associated microbiomes requires 

224 disentangling several levels of complexity. It is also is crucial to gain an understanding of the 

225 fitness effects of each putative pathogen on its host, because the magnitude of the fitness cost 

226 (i.e. virulence) of a pathogen during infection determines its place on the mutualist-pathogen 

227 continuum. In principal, this requires demonstration of a fitness cost to the host, yet 

228 demonstrating fitness effects of many putative pathogens in nature is challenging and often 

229 requires datasets that are much larger than those obtained in a typical field study [see Box 1]. 

230 Importantly, the fact that measuring the fitness consequences of infections in wild animals is 

231 challenging does not imply that pathogens are insignificant selective agents in the evolution of 

232 host genomes. In fact, pathogens are widely regarded to be among the strongest selective 

233 agents. Mutations conferring moderate or large benefits of resistance to hosts can become 

234 readily fixed by selection and are detectable through genome scans (Nielsen, 2005; Vitti, 

235 Grossman & Sabeti, 2013; Haasl & Payseur, 2016). Thus, comparative and population genetic 

236 studies of host genomes present compelling approaches for studying the presumed impact of 

237 pathogens (Fig. 2).

238

239 Genetic variation is typically studied at different levels, such as across species (Fig. 2A), 

240 across populations (Fig. 2B), within populations (Fig. 2C) or through time (Fig. 2D) to 
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241 disentangle the underlying genetics of host-pathogen interactions. For this purpose, two main 

242 approaches are typically employed. On the one hand, the underlying genetic architecture can be 

243 inferred using genotype-phenotype association studies. The statistical association between 

244 genomic loci and host-pathogen phenotypes is interpreted as evidence for the underlying 

245 genetics of a given phenotype (Hirschhorn et al., 2002). On the other hand, instead of 

246 determining fitness costs of pathogens in single experiments or surveys (see also Box 1), 

247 biologists have turned to signals of natural selection over evolutionary time as recorded in host 

248 genomes (Sabeti et al., 2006). While these genome scans typically cannot directly test the 

249 causal selective agent, they do provide insight into the possible biological processes that are 

250 adapting most rapidly in host genomes (Biswas & Akey, 2006). Indeed, analysis of signatures of 

251 selection in host genomes identified pathogens as the most likely drivers of the observed 

252 patterns in a number of studies. For example, in Drosophila, Sackton and co-authors (2007) 

253 identified that a class of immune genes that directly interact with pathogens, such as receptor 

254 genes, exhibited a high proportion of genes under positive selection compared to genome-wide 

255 observations. Similarly, across mammals, viral interacting proteins have stronger signals of 

256 adaptation than other protein-coding genes across the genome (Enard et al., 2016), and more 

257 of these genes than expected by chance are also evolving by positive selection in birds (Shultz 

258 & Sackton, 2019). 

259

260 A combination of selection scans and association studies has revealed important 

261 insights into differences in infectious disease susceptibilities, the identification of specific 

262 protective genes and alleles, and their evolutionary origin in humans, the most intensely studied 

263 organism with respect to disease (Nielsen et al., 2005; Kwiatkowski, 2005; Williams et al., 2005; 

264 Karlsson, Kwiatkowski & Sabeti, 2014; Malaria Genomic Epidemiology Network et al., 2015; 

265 Enard et al., 2016; Enard & Petrov, 2018). There have been similar advances in the 

266 understanding of the underlying genetics of natural host-pathogen systems in the wild. For 

267 example, Bourgeois et al. (2017) was able to confirm and refine previously identified quantitative 

268 trait loci that confer resistance in the planktonic crustacean Daphnia magna to the pathogen 

269 Pasteuria ramosa. Furthermore, investigations of signals of selection have identified additional 

270 genomic regions consistent with the evolution of resistance that were not identified by 

271 association approaches. Such loci present further candidates moderating the host-pathogen 

272 interactions, but without a clear association with specific phenotypic traits, evolution in response 

273 to other environmental variables correlated with pathogens often cannot be excluded (Bourgeois 

274 et al., 2017). 
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275

276 Despite the success of genome-wide associations and selection scans to find genomic 

277 evidence of pathogen pressures on hosts, simultaneous genomic investigation of the co-

278 evolutionary dynamics between host and pathogen within a single system remain rare (see Fig. 

279 1). Indeed, today, few systems have the genomic resources available to be truly interrogate 

280 ongoing genomic changes between pathogen and host in parallel. One such example is Bartha 

281 et al. 2013, who identified linked sequence variants between humans and HIV through genome-

282 wide-association scans. This study highlighted both host and viral loci that are potentially 

283 involved in the co-evolutionary dynamics between host and pathogen. Additionally, emerging 

284 studies of experimental evolution in the field or laboratory, or multigenerational sampling of 

285 natural populations of hosts and pathogens, have successfully identified novel adaptive alleles 

286 in both hosts (Scanlan et al., 2015; Cairns et al., 2017) and pathogens (Pal et al., 2007). The 

287 reciprocal nature of the interactions between host and pathogens over time naturally lead 

288 researchers to ask whether host and pathogen species co-diversify over evolutionary time and 

289 to what extent genomics can inform the underlying processes. Indeed, attempts to detect co-

290 speciation among hosts and pathogens date back to the beginning of the 20th century 

291 (reviewed in (Vienne et al., 2013). However, inferring co-evolutionary history through 

292 comparisons of host and pathogen phylogenies is challenging. For example, such comparisons 

293 can mistake a host shift followed by co-diversification as co-speciation (Vienne, Giraud & 

294 Shykoff, 2007). The former mechanism is more consistent with empirical data that suggests that 

295 the level of co-evolution necessary to drive co-speciation of host and pathogen is rarely 

296 encountered in nature (Vienne et al., 2013). As models of molecular adaptation and gene tree 

297 evolution improve, we may be able to identify phylogenetic congruence at the gene-tree level or 

298 signatures of selection that co-vary among hosts and parasites with more confidence. In turn, 

299 we might be better able to interpret results in the light of co-diversification vs co-speciation of 

300 studies, such as by Tso et al. (2018), where a pathogenic strain of Candidas albicans evolved 

301 into a gut symbiont in mice in just ten weeks. Parallel genomic analyses of the pathogen 

302 showed that genes involved with an important virulence factor in C. albicans, the hyphal 

303 morphogenesis program, had undergone rapid degeneration via both point mutations and 

304 deletions.

305

306 From candidate genes to whole genome analysis

307 As outlined above, the co-evolution of host and pathogens can result in distinct and measurable 

308 genomic signatures of selection, which can reveal the genetic mechanisms by which hosts and 
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309 their pathogens interact. The genomics revolution has spurred the transition from single-

310 candidate gene studies to genome wide analyses of hosts and pathogens. Historically, a 

311 number of different candidate host immune genes families have attracted particular attention for 

312 studies of host-pathogen interactions, including components of the innate immune system such 

313 as toll-like receptors (TLRs) (Tschirren et al., 2013; Zhang et al., 2014; Zhang, Lun & Tsui, 

314 2015; Shan et al., 2018), interferons and antimicrobial peptides (Clark & Wang, 1997; 

315 Tennessen, 2005; Franzenburg et al., 2013; Carlin et al., 2018). These and other studies show, 

316 both in vertebrates and insects, widespread signatures of positive selection and rapid evolution 

317 in genes of the innate immune system ([widerská et al., 2018; Harpur et al., 2019; Adrian et al., 

318 2019). Gene expression studies have also revealed widespread activation of host innate 

319 immune genes upon natural or experimental infection with pathogens, such as Pseudomonas 

320 and Daphnia (Kumar et al., 2018). As such, these studies have contributed much to our general 

321 understanding of the host9s responses to pathogen exposure and common pathways to 

322 resistance evolution over time.

323

324 The candidate gene family that has attracted the most attention in ecological and 

325 evolutionary host-pathogen studies, at least in vertebrates, is the major histocompatibility 

326 complex (MHC) (Hughes & Nei, 1988; Bernatchez & Landry, 2003; Meyer-Lucht & Sommer, 

327 2005; Spurgin & Richardson, 2010). MHC genes encode cell-surface molecules that play a 

328 central role in pathogen recognition as part of the adaptive immune response. T-cells act to 

329 destroy infected cells both directly, as cytotoxic T-cells, and indirectly, as T-helper cells which 

330 activate other immune cells, but they can only determine what is self or foreign from peptides 

331 presented by MHC molecules. The number of MHC gene copies carried by individuals varies 

332 widely between, and even within, species (Kelley, Walter & Trowsdale, 2004; Cheng et al., 

333 2012; Lighten et al., 2014). Additionally, the allelic diversity recorded within and between gene 

334 copies makes the MHC genes the most polymorphic loci to date (Reche & Reinherz, 2003; 

335 Robinson et al., 2015). This exceptional polymorphism is believed to be primarily maintained by 

336 selection from a wide range of pathogens (Prugnolle et al., 2005; Qutob et al., 2011). Overall, it 

337 is clear that MHC genes play a pivotal role in the fight against pathogens and numerous studies 

338 have established associations between MHC genotypes and infections with a particular 

339 pathogen (Kaslow et al., 1996; Meyer-Lucht & Sommer, 2005; Oliver, Telfer & Piertney, 2009; 

340 Bolnick & Stutz, 2017).

341  
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342 Although the candidate gene approach has been the standard method for studying 

343 immune genes in the context of host-pathogen interactions, the rapidly decreasing costs of high 

344 throughput sequencing are making whole-genome approaches much more feasible. Whole-

345 genome population genetic and comparative genomic studies allow unbiased detection of 

346 regions of the genome that are evolving non-neutrally across a variety of time scales. When 

347 combined with functional annotations or association studies, such comprehensive genome-wide 

348 surveys permit incisive tests of the effects of pathogens on host genomes that are simply not 

349 possible from candidate gene studies. Furthermore, whole genome studies are not restricted by 

350 a priori predictions of which genes are important in responding to pathogen challenges. Thus, 

351 whole-genome approaches offer the potential to reveal new unbiased insights into the genetic 

352 basis of host-pathogen interactions, e.g. (Enard et al., 2016; Shultz & Sackton, 2019). Since 

353 multiple genes are most often involved in a host9s response to a particular pathogen, whole-

354 genome approaches also have the potential to reveal these understudied polygenic responses 

355 (Daub et al., 2013). However, a major caveat associated with the whole-genome approach is 

356 that genomic regions of high repeat content, or highly duplicated genes, often do not assemble 

357 well or at all, whether considering host or pathogen. Genome assembly problems may be a 

358 significant disadvantage for host-pathogen studies given that some key genes which play a role 

359 in innate and adaptive immunity are not only highly duplicated but also to some degree 

360 physically linked in the genome, such as the beta-defensin and MHC genes (Kaufman et al., 

361 1999; Hellgren & Ekblom, 2010; Balakrishnan et al., 2010). Improved sequence and scaffolding 

362 techniques are being developed to remedy problems of assembling such regions (Dilthey et al., 

363 2015) and some may be possible to overcome with long-read sequencing methods. Thus, while 

364 the whole-genome approach may become a gold standard for many host-pathogen studies in 

365 the future, we currently see a continued need for sequencing methods that target focal genes, in 

366 particular in studies of non-model species.

367

368 Genomic detection and surveys of pathogens

369 Ever since the invention of the polymerase chain reaction, molecular approaches have 

370 continuously provided sensitive methods for the detection of pathogens, often without prior 

371 separation from the host tissues (e.g. malaria pathogens Snounou et al., 1993; Hellgren, 

372 Waldenström & Bensch, 2004). High throughput sequencing techniques have now become 

373 pivotal for both detection and identification of new pathogens, especially in cases of emerging 

374 infectious diseases, and in pathogens with complex life histories and co-infections (Blasco-

375 Costa & Poulin, 2017). Furthermore, unmapped reads in host genome projects are likely a 
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376 fruitful source of undiscovered pathogens (Laine et al., 2019). Improved pathogen genomics 

377 holds great potential to advance our current understanding of host-pathogen interactions in 

378 several ways: From an epidemiological perspective, it allows one to reconstruct the spatial 

379 spread of pathogen invasion, illuminates pathogen population dynamics, and enables 

380 forecasting of future infection scenarios. Although this has been possible previously by using 

381 only a few key genetic markers from samples that spanned decades in time, such as in studies 

382 of influenza or rabies virus (Biek et al., 2007; Streicker et al., 2016), whole genome information 

383 now allows for high-resolution characterization of outbreaks over shorter timescales (e.g. Ebola 

384 (Dudas et al., 2017) and Zika (Faria et al., 2017; Grubaugh et al., 2017)). In addition, open 

385 source genomic data-sharing sites and analysis platforms like nextstrain 

386 (http://www.nextstrain.org/) are invaluable to explore pathogen time-space variation in real-time. 

387 Moreover, genomic analyses of dated pathogen samples have proven successful in inferring 

388 directionality of pathogen spread, for example, among wildlife and livestock, thus informing 

389 effective control measures (Kamath et al., 2016).

390

391 However, many technical challenges still remain for such approaches, especially in 

392 situations where pathogens cannot be physically separated from hosts (see Box 1 for an 

393 example). For example, pathogen DNA typically makes up only a small fraction of the total 

394 extracted DNA from samples of infected hosts, and host samples must therefore be sequenced 

395 at >1000X to obtain a 10X coverage of the pathogen (Videvall, 2019). A large number of 

396 enrichment protocols for high-throughput sequencing methods have been developed to facilitate 

397 the detection and quantification of pathogens. These enrichment protocols are often efficient 

398 ways of increasing the ratio of pathogen to host DNA. Before DNA extraction, intracellular 

399 pathogens can sometimes be isolated from infected host cells using cell-sorting or laser-capture 

400 microscopy techniques (Saliba et al., 2014; Wang et al., 2015), or separated from the host cells 

401 by targeting different life stages (e.g. gametes, spores) (Palinauskas et al., 2013). After DNA 

402 extraction, selective whole-genome amplification can specifically enrich for pathogen sequences 

403 in various ways: (i) by using oligos that are more abundant in the pathogen genome (Melnikov 

404 et al., 2011); (ii) by targeting differences in methylation between host and pathogen genomes 

405 (Gómez-Díaz et al., 2012); or (iii) by sequence capture enrichment protocols for pathogen DNA 

406 (Tagle et al., 1993). When enrichment protocols are not feasible, host and pathogen associated 

407 reads can often be separated in silico using reference sequence databases. In such cases, low-

408 coverage detection of genome fragments of pathogens in host genome sequencing reads is a 

409 straightforward and fruitful approach (e.g., Laine et al. 2019). Using this approach, putative RNA 
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410 viruses of Drosophila melanogaster were identified from de novo assembled RNAseq reads 

411 (Webster et al., 2015). Dual sequencing analysis of both host and pathogen can be further 

412 exploited to characterize the physiological response throughout the course of an infection 

413 (Florens et al., 2002; Jean Beltran et al., 2017). However, sequencing coverage and cost are 

414 major factors determining feasibility and scope of a study. Enrichment and optimization of 

415 protocols carry the caveat that they are study specific and, in many cases, not universally 

416 applicable.

417  

418 Simultaneous genome sequencing of multiple species 3 metagenomics - can help the 

419 field expand beyond the two-organism framework (Westermann, Barquist & Vogel, 2017), as 

420 has been most extensively demonstrated in microbiome research in the context of host health 

421 (Sekirov et al., 2010; Kamada et al., 2013). It is now clear that the whole microbial community 

422 shape host health, but are also in turn selected for and manipulated by hosts (Näpflin & Schmid-

423 Hempel, 2016; Schwarz, Moran & Evans, 2016; Rolhion & Chassaing, 2016; Näpflin & Schmid-

424 Hempel, 2017). In particular, metagenomics is increasingly able to shed light on the function of 

425 individual members of the microbiome, for example, by investigating metabolic pathways 

426 present in the community (Lee & Hase, 2014). Similarly, sophisticated pathogen-specific 

427 screening tools such as sequence chips with known pathogen probes can effectively screen 

428 complex ecosystems for pathogens within the community and may identify potential disease 

429 reservoirs (Bird & Mazet, 2018). Such approaches are employed by the PREDICT project of 

430 USAID which attempts to identify new zoonotic threats in <hot spot= regions in Africa, Asia, and 

431 Latin America by sampling wildlife (particularly non-human primates, bats, and rodents) as well 

432 as people with close contact with wildlife (http://www.vetmed.ucdavis.edu/ohi/predict/).

433  

434 Overall, genome-wide techniques and approaches provide us with an unprecedented 

435 wealth of information upon which specific hypotheses can be formulated and experimentally 

436 tested. A lingering limitation to the impact of such studies is low quality and poor annotation of 

437 reference genomes, especially for non-model host species. This challenge considerably slows 

438 our rate of discovery because many important parts of the host genome that respond to 

439 pathogen infection may remain undiscovered if they do not assemble properly or lack known 

440 gene annotation. Furthermore, relevant links to host-pathogen interaction could be missed 

441 because the link between genetics and the expressed phenotype is only poorly understood (e.g. 

442 the layer of mucus covering the mucosal surface in vertebrates whose composition is relevant 

443 for the specific host-pathogen interaction; see Box 2).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27734v1 | CC BY 4.0 Open Access | rec: 15 May 2019, publ: 15 May 2019



444  Infrastructural challenges of generalizing results across species and 

445 systems

446 The genomic data revolution driven by high-throughput sequencing has created numerous 

447 exciting opportunities to study host-pathogen interactions in a multitude of systems in 

448 unprecedented detail. This revolution extends to non-model organisms, although inference here 

449 may be hampered by a lack of suitable and/or sufficient host or pathogen samples. Moreover, 

450 even when such obstacles can be overcome, two major problems of relevance to this review 

451 continue to constrain the full impact, reuse, synthesis and reproducibility of host-pathogen 

452 studies, particularly for non-model systems: both involve the deposition and analysis of 

453 associated sequence data. First, while it is standard practice for sequence data to be deposited 

454 in well-curated, detail-rich national databases such as the National Center for Biotechnology 

455 Information (NCBI), the European Nucleotide Archive (ENA), or the DNA Data Bank of Japan 

456 (DDBJ), the associated biological metadata of these samples are often inadequate or 

457 misleading due to various inconsistencies in available sample information that is being 

458 deposited. This problem is not trivial to resolve in the context of host-pathogen studies, in part 

459 because the complexity of the standardized metadata forms of these platforms for deposition 

460 and retrieval of data (Dugan et al., 2014; Chang et al., 2016; Singh et al., 2019). Second, the 

461 analysis of genomic data is preceded by a large number of computationally complicated pre-

462 processing steps. The choice of algorithm and parameters in this pre-processing procedure can 

463 often have significant impacts on the final results but are generally inadequately documented 

464 and communicated. Together, the missing metadata and the lack of transparency regarding 

465 computational tools confound or even prevent robust meta-analysis and comparative studies; 

466 and without meta-analyses and comparative studies, results from individual studies of various 

467 host-pathogen systems cannot be integrated into a larger context.

468  

469 Improving the availability of metadata and the transparency of computational tools 

470 requires the compliance and openness of researchers to collect and analyze their data in a 

471 standardized format, with the goal of making the data useable for comparative studies and 

472 ultimately to make the data publicly available. Because the interactions between hosts and their 

473 pathogens are inherently dynamic across space and time, accurate information on sampling 

474 location and timing is essential information to include in metadata. This includes the host source 

475 of isolation for pathogens and the infection prevalence of hosts. Importantly, the nomenclature 

476 of genetically identical strains or species must be consistent. For example, despite being 
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477 genetically identical the haemosporidian lineage <Haemoproteus lineage 22= from birds, first 

478 described in 2002, has repeatedly been named differently in publications appearing between 

479 2002-2009: <AP21=, <COLL2=, <SWTH.H2=, and <WHA24= (Bensch, Hellgren & Pérez-Tris, 

480 2009). An obvious first step is to improve the design, user-friendliness and programming 

481 interface of currently existing popular databases for metadata. An integration of a large amount 

482 of data sources has been developed for some systems, such as haemosporidian pathogens in 

483 birds (MalAvi database, (Bensch, Hellgren & Pérez-Tris, 2009), or influenza viruses (GISAID 

484 database, Yuelong Shu, 2017). Such efforts should ideally be extended to all host-pathogen 

485 systems and are being realized more systematically under the umbrella of The Eukaryotic 

486 Pathogen Genomics Resource (EuPathDB), a database of pathogen genomic data that 

487 currently includes a dozen pathogen groups (Aurrecoechea et al., 2017).

488  

489 Similar to metadata documentation, detailed documentation of analysis tools and 

490 parameter choice is becoming more widely advocated (Nature Editorial, 2017). The use of 

491 scripted pipelines and version-controlled analyses has been advocated to address these 

492 challenges (e.g. Nunez-Iglesias, 2015). At the most basic level this includes a scripted analysis 

493 that does not require manual command input and thus is completely repeatable given the same 

494 raw data (and sufficient computational time) (Beaulieu-Jones & Greene, 2016). Hence, 

495 depositing analysis scripts in repositories such as Dryad or Github will become an important 

496 component of comparative biology in the genomic era in general and in particular of host-

497 pathogens interaction studies. At its best, automated and curated pipelines that allow 

498 continuous reanalysis of new and existing data will become an ambitious future goal for 

499 comparative studies (e.g. The Lair (pachterlab.github.io/lair/about/)). Although such practices 

500 will improve reproducibility of studies and integration of results across studies, such 

501 improvement does not necessarily ensure and validate choice of appropriate methods 

502 (Lotterhos, Moore & Stapleton, 2018). Nevertheless, extending automated analysis to 

503 organisms with more limited genomic resources, which might permit linking of metadata (such 

504 as whether a study is experimental or naturally observed) with sequence data across studies 

505 would open up exciting frontiers in comparative studies of host-pathogen interactions across 

506 different systems and beyond. 

507  

508 Studying host-pathogen interactions in the Anthropocene

509 The number of pathogen infections are predicted to continue to increase in the near future, as 

510 climate change, human population growth and transportation impact the geographic distribution 
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511 and contact rate of hosts and pathogens (Altizer, Bartel & Han, 2011; Maganga et al., 2014; 

512 Snäll et al., 2015). It has been estimated that wildlife is the source for 72% of emerging 

513 infectious diseases in humans (Cleaveland, Laurenson & Taylor, 2001; Jones et al., 2008; Olival 

514 et al., 2017) with recent examples including SARS, a virus in bats and small mammals; the 

515 avian influenza type H5N1; and Ebola, originally a virus in fruit bats, which recently caused a 

516 human catastrophe in western Africa (Dudas et al., 2017). Obviously, such pathogens can have 

517 wide-ranging consequences on global societal stability and economy, and can have devastating 

518 effects on natural populations (Daszak, Cunningham & Hyatt, 2000; Sachs & Malaney, 2002; 

519 Bonds et al., 2009). In this context, rapid DNA sequencing technologies offer great promise for 

520 our understanding of host-pathogen dynamics, and hence the ability to predict and control 

521 disease epidemics (Wohl, Schaffner & Sabeti, 2016; Takahashi et al., 2018).

522  

523 Natural systems are increasingly subjected to anthropogenic stressors, including climate 

524 change, urban development, overexploitation, pollution, noise, and transport (Gerber et al., 

525 2014). In recognizing that no host-pathogen system exists in isolation, it is essential to 

526 understand how such stressors affect the host9s fitness, immune system and pathogen 

527 susceptibility. For instance, immunotoxic contaminants can have substantial population level 

528 effects by contributing to anthropogenic stress and infectious disease outbreaks (Desforges et 

529 al., 2016). This is particularly true for marine and terrestrial top-predators, which, due to their 

530 life-history and placement at the top of the food chain, accumulate high levels of ecotoxins. 

531 Indeed, high tissue concentrations of persistent pollutants in Baltic seals in the 1970-80s were 

532 associated with oviduct occlusions and impaired immune system, leading to sterility and 

533 repeated infections (Bergman & Olsson, 1986), and recent work suggest that the same may be 

534 true for a wide range of European dolphins and killer whales (Jepson et al., 2016). Such 

535 increased levels of ecotoxins may explain the increasing prevalence and severity of diseases in 

536 marine wildlife. A detailed understanding of the role of these and other stressors in host-

537 pathogen systems will require multispecies and multi-methodological approaches integrating 

538 information at all levels of the system, including trophic interactions, resource availability, life-

539 history and population dynamics, as well as gene expression and selection.

540  

541 Human intervention also has the potential to alter pathogen communities directly, both 

542 by eliminating and by introducing pathogens (Daszak, Cunningham & Hyatt, 2000). Pathogens 

543 can play crucial roles as ecosystem engineers (Thomas et al., 1999; Wood & Johnson, 2015). 

544 Often, we lack the knowledge to accurately predict how the elimination of one pathogen will 
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545 affect the host population, other pathogens within the same host population, and their effect on 

546 the ecological community (Rogalski et al., 2017). For example, the introduction of invasive 

547 species often inadvertently results in the introduction of novel pathogens against which native 

548 hosts may possess little or no protection (van Riper et al., 1986). Here again, major future 

549 challenges include sample availability, ecological monitoring, and the collection and deposition 

550 of appropriate metadata. Additionally, cross-disciplinary scientific integration and communication 

551 between scientists, managers and decision-makers are crucial in order to advance global 

552 health.

553  

554 Conclusions and prospects

555 Innovations in genomic techniques have the potential to bring a synthesis to the study of host-

556 pathogen interactions across systems and environmental conditions. We highlighted several 

557 recent trends in this perspective for genomic studies of host-pathogen systems: (i) evolutionary 

558 genomics approaches have allowed the field to move from a candidate gene approach to 

559 investigations at the scale of whole genomes; (ii) the use of genomics for the detection and 

560 surveillance of host-pathogen systems; (iii) the challenges of the integrating natural history and 

561 ecological metadata and genomic data across systems and timescales due to infrastructural 

562 challenges of database integration and transparency; and (iv) the impact of anthropogenic 

563 stressors on host-pathogen systems that have consequences for global health. Additionally, our 

564 survey of the recent literature of ecological genomics of host-pathogen interactions revealed 

565 that studies with spatially and ecologically complex settings are rare, as are detailed studies of 

566 host genomic responses to pathogens. Any single host-pathogen study is constrained by limited 

567 resources or genomic tractability, the geographical and evolutionary time scales involved as well 

568 as environmental complexities. Accordingly, transparent and open science will help to achieve a 

569 comprehensive understanding of host-pathogen interactions in general. This will contribute to 

570 the integration of findings across the different scales (Fig. 1). A large repertoire of comparable 

571 and inter-communicative studies will facilitate a more generalizable understanding of the causes 

572 and consequences of host-pathogen interactions and a clearer roadmap to combating the 

573 continuous threat of pathogens in a changing world. 

574
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575 Boxes:

Box 1: Demonstrating pathogen-induced fitness costs in the wild

Determining where an organism lies on the mutualist-pathogen continuum requires an 

assessment of the fitness costs (i.e. virulence) elicited by a putative pathogen when it has 

established itself within its host in its natural habitat. In such a scenario, the feasibility of 

estimating fitness costs strongly depends, on the one hand, on the magnitude of the fitness 

effect and, on the other hand, the sample size. For example, severe negative fitness effects in 

birds due to infections by the introduced malaria pathogen Plasmodium relictum, have been 

readily demonstrated in several species of Hawaiian honeycreepers (Drepanididae) (van 

Riper et al., 1986). However, when P. relictum infects host species with which it has 

presumably co-evolved, observed fitness costs are lower (Bensch et al., 2007). Thus, 

hypothetically, demonstrating a negative fitness effect (i.e., mortality) of 5% year-on-year in 

natural populations (assuming a pathogen prevalence of 20% and an annual background 

mortality of 50%) requires a sample size of more than 2000 host individuals and the ability to 

accurately measure individual survival. The situation becomes even more complex when 

hosts are repeatedly exposed to the same pathogen and mortality varies across exposures. 

For example, if mortality is highest upon primary infection, in year two individuals that were 

unexposed in year one will be at a higher risk of dying than individuals that have been 

previously exposed. Often only long-term studies, such as that conducted by Asghar et al., 

(2014) on the effects of Plasmodium on lifetime fitness and survival of Great Reed Warblers, 

provide the sensitivity required to detect fitness costs. 

 

Given that the ecological role of an organism can be dynamic, the fitness consequences for a 

host of a particular pathogen are strongly dependent on the environmental and genetic 

context. The most obvious illustration of this is variation in virulence associated with host 

switches: Mycoplasma infection in house finches as compared to other song birds (Ley et al., 

2016), Ebola virus in humans as compared to bats (Leroy et al., 2005), or the morbillivirus 

Phocine Distemper Virus (PDV) in harbor seals as compared to other Arctic pinniped species 

(Härkönen et al., 2006) are all cases where virulence dramatically increased after switching to 

a new host. Second, another level of complexity presents itself in the cases of complex 

pathogen life cycles, where pathogens may require multiple host species for different 

developmental stages in order to complete their life cycle (Parker et al., 2003; Blasco-Costa & 
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Poulin, 2017). In cases such as these, it is often difficult to differentiate between pathogen 

species and different pathogen life stages morphologically. Third, infections by a single 

pathogen might actually be rare in nature, instead co-infections by multiple pathogen strains 

or species are likely to be the norm (Petney & Andrews, 1998). In this context, exposure 

history and the timing of infection might play crucial roles in terms of host fitness and 

pathogen virulence (Telfer et al., 2010; Ben-Ami, Rigaud & Ebert, 2011). Fourth, pathogen 

prevalence may vary across space and time and, hence, these patterns need to be taken into 

consideration in comparisons across scales (Thompson, 2009). This can be on a small scale 

within a host (e.g. between tissues), or across geographical space (e.g. between 

populations/species). For example, comparison of host and viral population structure 

suggests that dispersing male bats spread the rabies virus between genetically isolated 

female populations (Streicker et al., 2016). Fifth, hosts and their pathogens rarely interact in 

isolation but rather as part of a larger ecosystem, which might modulate how a pathogen 

interacts with its host and vice versa (Graham, 2008).

 

Overall, the availability of large genomic datasets has been pivotal in untangling each of the 

five levels of complexity. Nevertheless, relying solely on genetic data can be misleading. 

While new techniques help to identify new pathogens, ecological patterns, and link the 

genetic structure of host and pathogen populations, the resulting data are ultimately 

correlational and cannot establish any causal relationships without an experimental approach. 

For example, sticklebacks (Gasterosteus aculeatus) caught in a lake harbored more 

macroparasites than those from a river (Wegner, Reusch & Kalbe, 2003). With only this 

observation, one might be tempted to conclude that the sticklebacks from lakes were more 

susceptible to parasitism than those from rivers. However, subsequent experiments revealed 

that sticklebacks from lakes were less susceptible to pathogens, but probably experienced 

higher pathogen exposure (Scharsack & Kalbe, 2014). This illustrates the need for 

experimental studies to confirm causal relationships implicated by field data. However, 

experiments are restricted in the complexity they can represent (Plowright et al., 2008). In 

conclusion, the interpretation of genetic data without a deep understanding of the host-

pathogen ecology, and vice versa, can be misleading.

576
577

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27734v1 | CC BY 4.0 Open Access | rec: 15 May 2019, publ: 15 May 2019



Box 2: Barriers to infections 3 an example of difficulties linking genotype and phenotype 

Hosts are continuously exposed to potential pathogens, yet the establishment of an 

infection upon encounter is a relatively rare event. Most pathogenic infections are 

successfully prevented by <simple= barriers, the host9s first lines of defense (McGuckin et 

al., 2011; Hall, Bento & Ebert, 2017). One of the most underappreciated pre-infection 

barriers in (non-human) ecology is the continuously secreted layer of mucus covering the 

mucosal surface in vertebrates (Fig. 3A), and the glycocalyx that covers other epithelial 

cells and surrounds some single celled organisms (Quintana-Hayashi et al., 2018). As 

opposed to the skin, which is a dry, acidic, and of much smaller surface, the mucosal 

surface is orders of magnitude larger and presents a semipermeable, humid environment 

that many bacteria and pathogens could thrive in. However, the mucosal surfaces are 

protected by several layers of defense that a pathogen has to circumvent to either gain 

access to close interactions with host cells, or entry into host cells, or transferring across 

the host epithelium. The first barrier the pathogens encounter is the continuously secreted 

mucus layer covering the cells and the epithelial glycocalyx (Quintana-Hayashi et al., 

2018), into which a range of antimicrobial molecules are secreted, the bulk of this layer 

consists of a massive amount of highly diverse glycans (Fig. 3B). Among these highly 

diverse glycoconjugates, there are those that act as protection against infection by binding 

and disseminating the pathogen, act as steric hindrance or releasable decoys, but also 

those that act as receptors for pathogens and confer intimate adherence 

(Linden et al., 2008; Lindén et al., 2009; Padra et al., 2018). 

In fact, across mammalian and teleost species, most known interactions between viral or 

bacterial pathogens and its host occur via host glycan structures (Aspholm-Hurtig, 2004; 

Linden et al., 2008; Venkatakrishnan, Packer & Thaysen-Andersen, 2013; Padra et al., 

2014; Skoog et al., 2017). Interactions between host glycans and pathogens are thus 

central for host-pathogen specificity and virulence. As such, one would expect that host 

glycans and pathogen adhesins are subjected to strong selective pressure (Lindén et al., 

2008; Lind n et al., 2010; Vitiazeva et al., 2015; Venkatakrishnan et al., 2017; 2019). While 

certain individual interactions between host glycans and pathogen adhesins have been 

dissected in detail (Rydell et al., 2011; Bugaytsova et al., 2017) it remains difficult to 

actually identify different glycoconjugate compositions and their underlying genetic basis. 
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While enzymes involved in glycan biosynthesis are easily identified based on sequence 

identity (curated collection: www.cazy.org; (Lombard et al., 2013) and make up about 5% of 

the total genome (Rini, Varki & Esko, 2015) the resulting glycan structures are governed by 

stochastic events, substrate availability and state of differentiation and physiological 

environment. Thus, with the currently available knowledge it is not feasible to predict glycan 

repertoire and biosynthetic machinery based solely on genomic and/or transcriptomic 

sequence data of the host. In addition, we currently lack ability to screen large sample sets 

for glycan repertoire because mass spectrometric based glycomics discovery is at its best 

only semi-automatic. Additionally, on the pathogen side, most adhesins of pathogenic 

organisms have yet to be identified and characterized.

578
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Table 1(on next page)

Table 1: Deûnition of categories for each scale and assigned scores used for the
evaluation of host-pathogen literature.
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Table 1: Definition of categories for each scale and assigned scores used for the evaluation 

of host-pathogen literature.

Score Genomic scale Ecological scale
Temporal 

scale*
Spatial scale*

1
gene/ sequence 

fragment
none/ theoretical none none

2 full gene/ regulator

single species, 

laboratory system, 

environ. constant

single 

generation

local

(one population)

3
gene family/ 

microsatellite

single species, 

laboratory system, 

environ. variable

few generations

intermediate

(couple of 

populations)

4 whole plastid genome

multiple species, 

laboratory system, 

environment constant

many 

generations
species range

5
reduced genome 

representation

multiple species, 

laboratory system,

environ. variable

speciation time 

(small tree)
global

6
exome/ transcriptome/ 

proteome

single species, 

natural system,

environ. constant

speciation time 

(large tree)

7 whole genome

single species, 

natural system, 

environ. variable

8

multiple species, 

natural system, 

environ. constant

9

multiple species,

natural system,

environ. variable

  see SI Table 1 for list of references and associated scoring results

* the spatiotemporal scale (Fig. 1) is the sum of the individual scores of the temporal and spatial scales

1
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Figure 1(on next page)

Figure 1: The diversity of recent studies of host-pathogen interactions.

(A) Each of three scales of complexity 3 genomic, ecological and spatiotemporal - is
represented as an axis in this illustration. A study of host-pathogen interaction is placed into
this three-dimensional space based on the level of genetic, ecological, and spatiotemporal
detail that is being studied (see Table 1 for scores of scales). (B-D) Pie charts summarize the
results of the scores for the level of genetic, ecological, and spatiotemporal complexity
investigated in host-pathogen studies published between 2014-2018. (B) The complexity of
the ecological and genomic settings across studies are not correlated (Spearman9s Ã = 0.02,
p-value adjusted = 1.00; (C) nor are the genomic and spatiotemporal scale (Ã = 0.16, p-
value adj. = 0.13. (D) In contrast, the ecological scale positively correlates with the score of
spatiotemporal scale across studies (Ã = 0.50, p-value adj. = 0.00).
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Figure 2(on next page)

Figure 2: Schematic illustration how genetic variation varies (A) across species, (B)
across populations, (C) within a population, and (D) on an ecological time scale.

Comparative genomics across species can be used to identify genomic loci consistently
under positive selection in particular lineages or all lineages (A). Across populations (B),
population genomic variation in diûerent geographic populations can be correlated with
pathogen communities. Within a single population (C), phenotypic variation among
individuals can be linked to pathogen variation or diûerentially expressed genes with
transcriptomics. Genome scans may also identify regions of the genome under selection.
Finally, time series (D) either derived through experimental evolution or studies of ancient
DNA or diachronic samples can be used to identify the dynamics of a phenotype or allele
frequency through time.
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Figure 3(on next page)

Figure 3: The mucosal layer.

(A) shows two staining variants of the colonic mucosal tissue (T) of a healthy mouse, where a
mucus layer (M) keeps the majority of the fecal bacteria (FB) from direct contact with the
surface of the epithelial cells. On the left side, the Muc2 mucin (the main component of the
mucus layer) is stained in green and nuclei from the eukaryote cells in the tissue are stained
blue. Muc2 is produced by cells in the mucosal tissue, secreted into the mucus layer, and
present in degraded form in the fecal material. On the right side, the mucosal epithelial
tissue is outlined with red, eukaryotic nuclei are purple, the mucus layer unstained (but
clearly visible due to the absence of bacteria) and the bacteria are labelled green. Panel (B)

gives an overview of glycan structures that build the mucus layer and glycocalyx. Glycolipids
and glycoproteins are anchored in the eukaryotic cell membrane, and secreted mucins are
highly glycosylated glycoproteins consisting of 70-90% of glycans that make up the bulk of
the mucus layer. The glycans can be longer and more complex than depicted in this
illustration. The glycans can be either N-linked (via Nitrogen in asparagine) or O-linked (via
Oxygen in serine or threonine) to the protein core, and these two types of glycan chains
diûer with regards to biosynthetic pathway and structure.
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