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ABSTRACT

Social media has become a popular source for online news consumption with millions
of users worldwide. However, it has become a primary platform for spreading disinfor-
mation with severe societal implications. Automatically identifying social media users
that are likely to propagate posts from handles of unreliable news sources sometime in
the future is of utmost importance for early detection and prevention of disinformation
diffusion in a network, and has yet to be explored. To that end, we present a novel task
for predicting whether a user will repost content from Twitter handles of unreliable news
sources by leveraging linguistic information from the user’s own posts. We develop a
new dataset of approximately 6.2K Twitter users mapped into two categories: (1) those
that have reposted content from unreliable news sources; and (2) those that repost

content only from reliable sources. For our task, we evaluate a battery of supervised

machine learning models as well as state-of-the-art neural models, achieving up to 79.7
macro Fl1. In addition, our linguistic feature analysis uncovers differences in language
use and style between the two user categories.

Subjects Computational Linguistics, Network Science and Online Social Networks, Social
Computing
Keywords Social Media, Natural Language Processing, Disinformation

INTRODUCTION

Social media has become an important source for online news consumption, widely
adopted by news outlets, individual journalists and end users (Hermida et al., 2012;
Kalsnes & Larsson, 2018). The use of social media enhances civic engagement and
political participation offering a direct way of communication with millions of users
worldwide (Bennett, 2008; Gil de Ziifiiga, Jung ¢ Valenzuela, 2012).

A widespread phenomenon in social media platforms is the generation and dissemination
of unreliable content (e.g., fabricated or deceptive information, exaggerated headlines,
pseudoscience, propaganda) by particular news outlets that typically act as disinformation
diffusion sources. Diffusion of disinformation in social media typically begins when a
news source publishes a story that subsequently is propagated by users via reposting
(e.g., retweeting, sharing) it to their personal networks of friends. It has been observed
that disinformation propagates faster compared to credible information amongst users
in social media (Vosoughi, Roy ¢ Aral, 2018; Lazer et al., 2018). Furthermore, when a user
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comes across an unreliable story once, it is enough to increase their later perception
of its accuracy (Pennycook, Cannon ¢ Rand, 2018). Media that disseminate unreliable
content often aim to manipulate people’s opinion and influence election results which has
implications to political stability worldwide (Allcott ¢ Gentzkow, 2017; Humprecht, 2018).
Previous studies suggest that factors positively associated with the sharing unreliable news
posts on social network include psychological factors (e.g., online trust, self-disclosure, fear
of missing out, and ideological extremity) and political orientation (e.g., right-leaning) (Shu
et al., 2019; Talwar et al., 2019; Hopp, Ferrucci ¢» Vargo, 2020). In this study, we investigate
whether user language information can help identify who will repost items from Twitter
handles of unreliable news sources. To test this hypothesis, we define a new classification
task seeking to predict whether a user is likely to repost content from unreliable news sources
given all the history of the user’s posts up to the first repost of a news item, i.e., before they
actually do it. Early detection of users that are likely to repost content from unreliable sources
can help: (i) political scientists and journalists to analyse which topics of discussion are
related to disinformation on a large scale (Bode ¢ Vraga, 2015); (ii) social media platforms
such as Twitter or Facebook to prevent the diffusion of potentially unreliable stories in the
network (Castillo, Mendoza ¢ Poblete, 2011; Conroy, Rubin & Chen, 2015; Shu et al., 2017);
and (iii) psychologists to complement studies on personality analysis (Penrnycook & Rand,
2018). The main contributions of our paper are as follows:

e We frame a novel binary classification task for early detection of users sharing content
from unreliable news sources using diverse language features extracted from the aggregate
of users’ original tweets;

e We evaluate a battery of traditional feature-based and neural predictive models that
achieve up to 79.7 F1 score;

e We perform a qualitative analysis of our results to shed light into language use differences
of users that diffuse content from unreliable or reliable news sources;

BACKGROUND AND RELATED WORK

Disinformation in social media

Social media has become a primary platform for live-reporting (Engesser ¢ Humprecht,
2015) with the majority of mainstream news media operating official accounts (e.g., @BBC
and @Reuters on Twitter). However, social media platforms are also regarded as a fertile
breeding ground for the diffusion of unverified, fabricated and misleading information
due to its openness and popularity (Zubiaga et al., 2018a). This type of information is often
referred to as misinformation.

Misinformation has been defined as an umbrella term to include any incorrect
information that is diffused in social networks (Wu et al., 2019). On the other hand,
disinformation is defined as the dissemination of fabricated and factually incorrect
information with main aim to deliberately deceive its audience (Glenski, Weninger ¢
Volkova, 2018b).
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com/, http://www.propornot.com,
https://mediabiasfactcheck.com, etc.

Categorization of unreliable news sources

Unreliable news sources are categorized by their intention and the degree of authenticity
of their content (Rubin, Chen ¢ Conroy, 2015; Rashkin et al., 2017). Rubin, Chen & Conroy
(2015) define three categories of deceptive news: (1) serious fabrications including
unverified claims coupled with exaggerations and sensationalism; (2) large-scale hoaxes
that are masqueraded as credible news which could be picked up and mistakenly
disseminated; and (3) humorous fakes that present fabricated purposes with no intention
to deceive. Rashkin et al. (2017) extended these three groups of misinformation into a more

fine-grained classification:

e Propaganda news uses misleading information and writing techniques (Martino
etal., 2019) to promote a particular agenda (Glenski, Weninger ¢ Volkova, 2018a).
Propaganda news sources that mostly share unreliable stories often aim to manipulate
people’s opinions and influence election results posing a threat to political stability
worldwide (Allcott & Gentzkow, 2017; Humprecht, 2018).

e Clickbait is defined as using exaggerated headlines for grabbing user attention and
misleading public opinion (Glenski, Weninger & Volkova, 2018a).

e Conspiracy theories can be understood as a kind of distorted interpretation of real
events from people with ulterior motives such as political and religious groups (Goertzel,
1994; Byford, 2011).

e Satire news commonly mimics professional news press, incorporating irony and illogical
contents for humour purposes (Tandoc Jr., Lim ¢ Ling, 2018; Burfoot ¢ Baldwin, 2009).

Recent efforts on detecting and index unreliable news sources rely on crowdsourcing
and experts ' to annotate the reliability of the news media (Volkova et al., 2017; Baly et al.,
2018; Glenski, Weninger ¢ Volkova, 2018a).

Previous work on combating online disinformation

Previous work on combating diffusion of disinformation in social media (Castillo,
Mendoza ¢ Poblete, 2011; Conroy, Rubin ¢ Chen, 2015; Shu et al., 2017) has focused on
characterizing the trustworthiness of (1) news sources (Dong et al., 2015; Baly et al., 2018);
(2) news articles (Rashkin et al., 2017; Horne et al., 2018; Potthast et al., 2018; Pérez-Rosas
et al., 2018); and (3) individual claims including news article headlines and rumors (Popat
et al., 2016; Derczynski et al., 2017; Volkova et al., 2017; Zubiaga et al., 2018b; Thorne &
Vlachos, 2018). Zhou et al. (2019) present a novel task for detecting the check-point which
can early-detect a rumor propagated in a social network. Martino et al. (2019) develop
models for detecting up to 18 writing techniques (e.g.,loaded language, slogans, flag-waving,
exaggeration, etc.) used in propaganda news. Similarly, Pathak ¢ Srihari (2019) introduced
a corpus of news articles related to US politics containing false assertions which are written
in a compelling way. At the user level, social scientists and psychologists have utilised
traditional methods, such as recruiting participants for online surveys and interviews,

to explore cognitive factors which may influence people’s ability to distinguish fake
news (Pennycook, Cannon ¢ Rand, 2018). For instance, the lack of analytic thinking plays
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2Note that one could use a user’s social
network information but this is out of the
paper’s scope because we are interested
in analysing differences in language use
between the two groups of users.

a vital role in recognition of misinformation (Pennycook ¢ Rand, 2018). Previous data-
driven studies include (1) analysing bots participation in social media discussion (Howard
& Kollanyi, 2016) and distinguishing between automated and human accounts (Mihaylov
& Nakov, 2016); (2) identifying user reactions (e.g., agreement, answer, appreciation,
humor, etc.) to reliable/unreliable news posts (Glenski, Weninger ¢ Volkova, 2018a);
and (3) analyzing the demographic characteristics of users propagating unreliable news
sources (Glenski, Weninger ¢ Volkova, 2018b), e.g., low-income and low-educated people
are more likely to propagate unreliable news sources on social networks.

In our paper, we tackle the problem of early detecting users who are likely to share post
from unreliable news sources which is rather different to the focus of previous work on
disinformation detection and analysis.

TASK DESCRIPTION

Our aim is the early detection of social media users that are likely to repost content from
unreliable news sources before they actually share any other news items at all. To that
end, we define a novel binary classification task for predicting whether a social media user
will propagate news items from unreliable or reliable news sources using solely language
information”’.

We assume a training set of n users U = {(x1,y1), ..., (Xn,yn)} where x; is a vector
representation of language information extracted from user’s i timeline consisting of posts
up to the first repost of any news item, and y; € {reliable,unreliable} is an associated
user label. Given U, we learn a function f that maps a new user j into one of the two
categories y = f (x;) using any suitable supervised machine learning algorithm.

We consider the posts up to the first share of any news item, ensuring that we only use
prior information that is not linked to any news source. One could also introduce a cut-off
in time or keep the top k posts but we choose to use all the available information possible.
We opted to define a binary task (i.e., reliable vs. unreliable) rather than a fine-grained
classification task (i.e., propaganda, hoax, clickbait, and reliable) because propagating any
type of disinformation might be equally harmful. For similar reasons, we are not focusing
on modeling the proportion of posts from reliable/unreliable sources in users’ Twitter
Timeline.

DATA

At present, there is no existing dataset to model our predictive task. For the purposes of
our experiments, we develop a new dataset of Twitter users who have retweeted posts from
unreliable or reliable news sources. We opted for Twitter because the majority of accounts
and posts are publicly available and it has been extensively used in related work (Volkova
et al., 2017; Rashkin et al., 2017; Glenski, Weninger ¢ Volkova, 2018a).

Our data collection process consists of three main steps (summarized in Fig. 1): (1)
collection of posts from reliable and unreliable news sources; (2) collection of candidate
users that have shared at least one of the posts collected during the first step; (3) assignment
of users to the reliable and unreliable categories.
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Figure 1 User filtering and labeling flowchart.
Full-size Gal DOI: 10.7717/peerjcs.325/fig-1

Collecting posts from unreliable and reliable news sources

To identify users that have shared content from a particular news source, we first need
to collect posts from reliable and unreliable news sources. For that purpose, we use a
widely-used and publicly available list of English news media Twitter accounts provided by
Volkova et al. (2017) and Glenski, Weninger ¢ Volkova (2018a), which contains 424 English
news media sources categorized in unreliable (satire, propaganda, hoax, clickbait) and
reliable, following Rubin, Chen ¢ Conroy (2015). For each news source, we retrieve the
timeline (most recent 3,200 tweets) using the Twitter public API. We then filter out any
retweets to ensure that we can collect only original posts from each Twitter account.

In this list, unreliable news sources (e.g., Infowars, Disclose.tv) have been annotated
by digital journalism organisations (e.g., PropOrNot, fakenewswatch.com, etc.), while
the reliable news media accounts (e.g., BBC, Reuters) have all been verified on Twitter
and used in Glenski, Weninger ¢ Volkova (2018a). Since satire news sources (e.g., The
Onion, Clickhole) have humorous purposes (no desire to deliberately deceive (Rashkin
etal., 2017)), we exclude them as in Glenski, Weninger & Volkova (2018b) resulting into
251 trusted and 159 unreliable sources. Note that the list does not exhaustively cover all
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3We use the NLTK English stopwords list.

the available sources but it is a representative sample for the purpose of our experiments.
We also use the characterization of an entire news source as reliable/unreliable following
Rashkin et al. (2017); Volkova et al. (2017) and not individual posts.

Collecting Candidate Users

We retrieve an initial set of approximately 15,000 candidate users by looking into the most
recent user accounts who have retweeted at least an original tweet from each news source.
Due to the public Twitter API limits, we do not have access to user likes of news items.
Based on the user profile information, we filter out users with more than 3,200 tweets
due to the Twitter public API limits, since we need access to the entire timeline to decide
the category the user belongs to (see section Labeling Users). For the remaining users, we
collect their entire timeline (up to 3,200 tweets) and we filter-out any user with majority of
non-English tweets (i.e., tweets labelled as ‘en’ or ‘en-gb’ by Twitter). Then for each user,
we count the number of retweets from reliable and unreliable news sources respectively.
Subsequently, we remove all user’s retweets (including tweets containing RT) and we keep
only the tweets up to the first retweet of a news source for each user. Moreover, we only
keep users with more than 10 original tweets.

Labeling users

Our classification task is defined as the early detection of users posting unreliable news
sources before they actually do it for the first time. Therefore, candidate users are assigned
into two categories (Unreliable, Reliable):

e Unreliable. Users that have reposted unreliable sources at least three times (to ensure that
this is a consistent behaviour) including the case when a user has shared both reliable and
unreliable sources (modeling the ratio of unreliable/reliable it is out of the scope of early
detection) are assigned to the unreliable class.

e Reliable. Users that have retweeted only reliable news sources are assigned to the reliable
category.

Given that Twitter users can also share shortened URLs from unreliable news
websites (e.g., http://www.infowars.com), we collect and expand all shortened URLs
(e.g., https://t.co/example’) extracted from the posts of users labeled as reliable. We then
remove all users who have shared any URLs from unreliable news websites. Our data
collection process yielded a set of 6,266 users (3,468 and 2,798 for reliable and unreliable
respectively) with a total of 1,356,480 tweets (see Table 1).

Text preprocessing

We pre-process all tweets from all users by first lowercasing text and then tokenizing.
Furthermore, we remove any stop words” and replace all URLs and @-mentions with URL
and usr markers respectively. See Table 1 for token statistics per user.

Ethics
Previous work on the study of who spreads misinformation in social networks has used
data collected through survey questionnaires (i.e., self-report data) and trace data (i.e.,
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4Early experimentation with topic models
did not yield highly coherent topics.

Table 1 Dataset statistics.

Unreliable Reliable
Users
Total 2,798 3,468
Tweets
Min 10 10
Max 2,600 2,613
Mean 172 252
Median 71 116
Total 481,199 875,281
Tokens
Min 17 10
Max 37,576 251,030
Mean 1,796 2,779
Median 657 1,150
Total 5,024,341 9,713,595

user-generated content) (Talwar et al., 2019; Chen et al., 2015; Shu et al., 2019; Hopp,
Ferrucci & Vargo, 2020). We employ similar standard practices on studying social media
user behavior. Our work has received approval from the University of Sheffield Research
Ethics Committee (Ref. No 025470) and complies with Twitter data policy for research
(https://developer.twitter.com/en/developer-terms/agreement-and-policy). Note that we
will not share the data for non-research purposes.

METHODS

SVM

We use Support Vector Machines (SVM) with an Radial Basis Function (RBF) kernel
(Joachims, 2002) for all of our feature-based models which can be considered as baselines.
We extract three types of language features: (1) Bag-Of-Words (BOW); (2) topics; and (3)
Linguistic Inquiry and Word Count (LIWC), following a similar approach to recent work
in computational social science (Rashkin et al., 2017; Pérez-Rosas et al., 2018; Zhang et al.,
2018; Holgate et al., 2018):

e We use BOW to represent each user as a TF-IDF weighted distribution over a 20,000
sized vocabulary with the most frequent unigrams, bigrams and trigrams. We only
consider n-grams appearing in more than five and no more than 40% of the total users.

e We also represent each user over a distribution of 200 generic word clusters (Topics” )
computed on a Twitter corpus and provided by Preo fitic-Pietro, Lampos & Aletras (2015)
for unveiling the thematic subjects that the users discuss.

e We finally represent each user over a distribution of 93 psycho-linguistic categories
represented by lists of words provided by the Linguistic Inquiry and Word Count
(LIWC) 2015 dictionary (Pennebaker, Francis ¢ Booth, 2001).
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>We also tested a Hierarchical Attention
Network (Yang et al., 2016) achieving
similar performance to BIGRU-ATT.

We then train SVMs using the three types of features: SVM-BOW, SVM-Topics and
SVM-LIWC individually and in combination (SVM-AIl).

Avg-EMB

As our first neural model, we use a simple feed forward network (Avg-EMB) which takes
as input the concatenation of all the tokenized tweets of a user. Words from users’ tweets
are first mapped into embeddings to compute an average embedding which represents the
textual content posted by a user. Subsequently, the average embedding is passed to the
output layer with a sigmoid activation function for binary classification.

BiGRU-ATT

Furthermore, we train a bidirectional Gated Recurrent Unit (Cho et al., 2014) with self-
attention (Xu et al., 2015) (BiGRU-ATT).” The input is first mapped into word embeddings
which are then passed through a BiGRU layer. A user content embedding is computed as
the sum of the resulting context-aware embeddings weighted by the self-attention scores.
The user content embedding is then passed to the output sigmoid layer.

ULMFiT

The Universal Language Model Fine-tuning (ULMFiT) (Howard & Ruder, 2018) is a
transfer learning approach that uses a Average-Stochastic Gradient Descent Weight-
Dropped Long Short-Term Memory (AWD-LSTM) (Merity, Keskar ¢ Socher, 2017)
encoder pre-trained on a large corpus using a language modelling objective. Following the
standard adaptation process of ULMFiT, we first fine-tune the AWD-LSTM on language
modelling using our dataset, and then we adapt the classifier into our binary task by
replacing the output layer. We finally fine-tune ULMFiT using the gradual unfreezing
method proposed in Howard ¢ Ruder (2018).

T-BERT and H-BERT

Deep Bidirectional Transformers (BERT) (Devlin et al., 2018) is a state-of-the-art masked
language model based on Transformer networks (Vaswani et al., 2017) pre-trained on large
corpora, i.e., Books Corpus and English Wikipedia. Given the maximum input sequence
length of BERT is 512, we first use a truncated version of BERT (T-BERT), which only takes
the first 512 word pieces of each user as input. For our specific binary classification task,
we add a fully-connected layer with a sigmoid activation on top of the user contextualized
embedding obtained by passing input through BERT.

In order to take into account all the available textual information, we also employ a
hierarchical version of BERT (H-BERT) since the majority of users’ concatenated tweets is
longer than 512 word pieces. Here, each input is split into several 512 length word chunks.
The output for each chunk is averaged into a single vector before is passed through the
same output layer as in T-Bert.

T-XLNet and H-XLNet

XLNet is a generalized autoregressive language model (Yang et al., 2019) similar to BERT
which has achieved state-of-the-art performance in multiple NLP tasks. XLNet uses a
perturbed language model objective instead of masked language model used in BERT.
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Similar to BERT-based models, we employ both truncated and hierarchical versions of
XLNet (i.e., T-XLNet and H-XLNet respectively) adapting them to our task using sigmoid
output layers.

RESULTS

Experimental setup
We split our data into train (70%), development (10%), and test (20%) sets. The
development set is used for tuning the hyper-parameters of the models.

Following a similar hyper-parameter tuning method to recent work in computational
social science (Vempala ¢ Preo fiuc-Pietro, 2019; Maronikolakis et al., 2020), we tune the
penalty parameter C € {10, 1e2, 1e3, le4, 1e5} and n-gram range € {(1,1), (1,2), (1,3),
(1,4)} of the SVMs, setting C = 1e4 and n-gram range = (1,2). For BiIGRU-ATT, we tune
the GRU hidden unit size € {50, 75, 100} and dropout rate € {0.2, 0.5} observing that 50 and
0.5 perform best respectively. For Ave-EMB and BiGRU-ATT, we use Glove embeddings
(Pennington, Socher ¢ Manning, 2014) pre-trained on Twitter (d = 200). For all neural
models, we use binary cross-entropy loss and the Adam optimizer (Kingma ¢ Ba, 2015)
with default learning rate 0.001 (except of the fine-tuning of ULMFiT, BERT and XLNet
models where we use the original learning rates). We use a batch size of 8 for BERT, XLNet
models and 64 for the rest of the neural models respectively.

We repeat the training and testing of each model three times by setting different random
seeds and finally report the averaged macro precision, recall and F1-score. All dataset splits
and random seeds will be provided for reproducibility.

Prediction results
Table 2 presents the results of the SVM with all the feature combinations (BOW, Topics,
LIWC and All) and the neural models.

In general, neural models achieve higher performance compared to feature-based
models (SVM). Specifically, the T-BERT model achieves the highest F1 score overall (79.7)
surpassing all the feature-based models as well as other neural network-based methods.
This demonstrates that neural models can automatically unveil (non-linear) relationships
between a user’s generated textual content (i.e., language use) in the data and the prevalence
of that user retweeting from reliable or unreliable news sources in the future. The simpler
neural network model, Avg-EMB achieves a lower F1 score (75.5) compared to the other
neural models, i.e., BIGRU-ATT, BERT, XLNet and ULMFiT. This happens because the
latter have more complex architectures and can effectively capture the relations between
inputs and labels while the former ignores word order. Furthermore, ULMFit, BERT and
XLNet models have been pre-trained on large external corpora so they can leverage this
extra information to generalize better. Finally, we do not notice considerable differences
in performance between the truncated and hierarchical versions of the transformer-based
models (BERT and XNLNet) suggesting that a small amount of user generated content is
enough for accurately predicting the correct user class.

Best single performing feature-based model is SVM-ALL (75.9). Moreover, SVM with
BOW, Topics and LIWC achieve lower performance (75.8, 71.2 and 69.6 respectively).
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®MSM is an Internet acronym for
“mainstream media”.

Table 2 Macro precision - P, recall - R and F1-score - F1 (mean + standard deviation over three runs)
for predicting whether a Twitter user belongs to the reliable or unreliable class.

Model P R F1
Baselines
SVM
BOW 75.84+0.0 75.94£0.0 75.84+0.0
Topics 71.8£0.0 71.1£0.0 71.240.0
LIWC 69.8+0.0 69.6+0.0 69.61+0.0
All 75.9£0.0 75.8£0.0 75.940.0
Neural Models
Avg-EMB 76.3+£1.2 753+1.1 75.54+1.2
BiGRU-ATT 78.0+0.7 77.8 £0.3 77.8+0.5
ULMFiT 77.9£0.2 77.2+£0.6 77.440.5
T-BERT 79.7 £0.2 79.8 £0.1 79.7 £0.1
H-BERT 79.5+£0.4 78.7£0.6 78.940.5
T-XLNet 79.61+0.3 79.8 £0.2 79.7+0.3
H-XLNet 79.3£0.3 78.9+0.4 79.0£0.3

Error analysis

We performed an error analysis on the predictions of our best model, T-BERT. We notice
that users in the unreliable class who are classified as reliable are those who repost from
both reliable and unreliable sources. These users have an average of 40 future retweets from
reliable news sources which is higher than the average number (31 retweets) in the entire
dataset. Therefore, it is likely that such users use similar topics of discussion with reliable
users. On the other hand, there is a of total 454 unreliable users who have no retweets from
reliable sources in our dataset, interestingly, only four of them are classified wrongly. We
also observe that it is harder for our model to classify correctly reliable users when they
have only posted a small number of original tweets (e.g., 10-60).

Linguistic analysis

Finally, we perform a linguistic feature analysis to uncover the differences in language use
between users in the two classes, i.e., reliable and unreliable. For that purpose, we apply
univariate Pearson’s correlation test to identify which text features (i.e., BOW, Topics and
LIWC) are high correlated with each class following Schwartz et al. (2013). Tables 3, 4 and
5 display the top-10 n-grams, LIWC categories and Topics (represented by the most central
words as in Preo fitic-Pietro et al. (2015)) respectively. All Pearson correlations (r) presented
in tables are statistically significant (p < 0.001).

BOwW

Table 3 shows the ten most correlated BOW features with each class. We observe that users
reposting unreliable news sources in the future are more prevalent in tweeting about politics
(note that we exclude user retweets in our study). For example, they use words related to the
established political elite (e.g., liberal, government, media, MSM®) and Middle East politics
(e.g., islam, israel). This may be partially explained by studies which find that people who
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Table 3 N-grams associated with unreliable and reliable categories sorted by Pearson’s correlation (r)
between their normalized frequency and the labels (p < .001).

n-grams
Unreliable r Reliable r

war 0.140 school 0.150
media 0.137 gonna 0.133
government 0.135 myself 0.133
truth 0.133 wanna 0.131
israel 0.123 feel 0.131
liberal 0.122 excited 0.131
msm 0.121 mom 0.127
liberals 0.113 mood 0.122
muslim 0.113 okay 0.121
islam 0.112 rn 0.121

are more ideologically polarized might be more receptive to disinformation (Marwick,
2018) and engage more with politics on social media (Preo fiuc-Pietro et al., 2017). Users
using language similar to the language used by unreliable and hyperpartisan sources can be
explained by the fact that these users might already consume news from unreliable sources
but they have not reposted any of them yet (Potthast et al., 2018; Pennycook, Cannon ¢
Rand, 2018).

Users belonging in the reliable news sources category use words related to self-disclosure
and extraversion such as personal feelings and emotions (e.g., mood, wanna, gonna, 7’ll,
excited). Moreover, words such as birthday, okay denote more frequent interaction with
other users, perhaps friends.

Topics

Table 4 shows the ten most correlated topics with each class. Topics related to politics such
as political ideology (#138, #175), government (#179) and justice (#106) are correlated
with users that will propagate unreliable sources, aligned with the n-grams analysis. We
also observe a high correlation of such users with the topic related to impolite personal
characterizations (#78). This corroborate results of a recent study that showed political
incivility on Twitter is correlated to political polarization (Vargo ¢» Hopp, 2017).

Users who will repost reliable sources discuss topics related to their day-to-day life such
as education (#120), food (#65 and #166) and fashion (#1). Some topic words (e.g., sleep,
exhausted and tired from #101) reveal that users emotional or physical states caused from
work or study. In other words, these users tend to share more frequently information about
their daily life, time and schedule (#101, #2 and #27).

Liwc

Table 5 shows the ten most correlated LIWC categories with each class. LIWC categories
such as Power and Drives are more prevalent in users that will share unreliable sources. We
also observe the difference in using casual language, e.g., Netspeak and Informal categories
which are more often used by users that will share trusted sources.
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Table 4 Topics associated with unreliable and reliable categories sorted by Pearson’s correlation (r)
between the topic normalized frequency and the labels. All correlations are significant (p < .001, ¢-test,

Simes corrected).

Topics

# Unreliable r

175 religious, colonialism, christianity, judaism, persecution, 0.244
fascism, marxism, nationalism, communism, apartheid

118 #libya, libyan, libya’s, loyalists, palestinians, iran’s, 0.21
gaddafi’s, al-qaeda, libya, repression

138 republican, democratic, gop, congressional, judiciary, 0.196
hearings, abolishing, oppose, legislation, governors

106 allegations, prosecution, indictment, alleged, convicted, 0.184
allegation, alleges, accused, charges, extortion

18 harper, congressman, abbott, mccain, cain, turnbull, 0.183
spokesman, corbett, president, chairman

179 gov’t, govt, government, government’s, govt’s, privatisation, 0.173
bureaucrats, draconian, safeguards, bureaucracy

160 latvian, bulgarian, croatian, turkish, malaysian, estonia, 0.166
hungarian, basque, cypriot, romanian

196 govern, compromises, ultimately, unwilling, distrust, 0.165
thereby, establish, assert, willingness, inaction

78 self-serving, hypocritical, moronic, idiocy, bigoted, blatant, 0.149
reactionary, dismissive, uninformed, pandering

176 armed, gunmen, killings, suspected, bombings, police, 0.148
detained, authorities, policemen, arresting

# Reliable r

120 physics, sociology, maths, biology, math, chem, calculus, 0.143
geog, worksheet, worksheet

101 4 h, #naptime, #sleepy, 4hrs, 6hrs, #exhausted, #tired, 3 h, 0.14
3hrs, #sotired

2 tomorrows, tmw, tomorrow, tomor, tomrw, #hopefully, 0.135
4day, #tgif, arvo, tmrw

53 giggling, giggled, hysterically, squealing, sobbing, moaned, 0.125
gasped, screaming, awkwardly, angrily

1 tights, cardigan, slacks, sleeveless, sweater, plaid, skirt, v- 0.119
neck, leggings, skinnies

65 #foodtweets, #foodtweet, yummm, yummmm, #nomnom, 0.119
spaghetti, sandwich, #yum, yummmmmm, #yummy

9 horribly, dreadfully, slighty, terribly, hungover, hungover, 0.118
majorly, majorly, horrid

27 1:30, 6:15, 3:30, 8:45, 7:45, 4:30, 8:15, 9:45, 5:30, 2:30 0.116

166 chocolate, strawberry, choc, toffee, cinnamon, almond, 0.112
parfait, butterscotch, choco, strawberries

33 b’day, birthday, birthdaaaay, birthdayyyyy, b-day, birthday, 0.102

birthdayyyy, birthdaaay, bday, birfday

CONCLUS

IONS

We have presented a new study on the early detection of users reposting unreliable news

sources. We have created a new dataset with users labeled into the two categories, i.e.,
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Table 5 LIWC features associated with unreliable and reliable categories sorted by Pearson’s correla-

tion (r) between the normalized frequency and the labels (p < .001).

LIWC

Unreliable r Reliable r

Analytic 0.242 Informal 0.200
Power 0.203 NetSpeak 0.192
Words > 6letters 0.184 Word Count 0.129
Space 0.153 Authentic 0.093
Drives 0.140 Ingest 0.087
Risk 0.125 Bio 0.080
Religion 0.125 Feel 0.073
Money 0.117 WordsPerSent. 0.071
Death 0.105 Leisure 0.067
Neg .Emotion 0.097 Time 0.064

reliable and unreliable. For this binary classification task, a Transformer-based pretrained

model (i.e., BERT) achieves up to 79.7 macro F1. Finally, our linguistic feature analysis

unveiled the main characteristics and differences between language features (i.e., BOW,

Topics and LIWC) in the two groups of users. In the future, we plan to extend this work

by performing a fine-grained classification into hoax, propaganda and clickbait (Glenski,

Weninger ¢ Volkova, 2018b); and explore whether language and social network information

are complementary.
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