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Background. Monitoring the external ground reaction forces (GRF) acting on the human body during

running could help to understand how external loads influence tissue adaptation over time. Although

mass-spring-damper (MSD) models have the potential to simulate the complex multi-segmental

mechanics of the human body and predict GRF, these models currently require input from measured GRF

limiting their application in field settings. Based on the hypothesis that the acceleration of the MSD-

model’s upper mass primarily represents the acceleration of the trunk segment, this paper explored the

feasibility of using measured trunk accelerometry to estimate the MSD-model parameters required to

predict GRF during running.

Methods. Twenty male athletes ran at approach speeds between 2 - 5 m·s-1. Resultant trunk

accelerometry was used as a surrogate of the MSD-model upper mass acceleration to estimate the MSD-

model parameters required to predict GRF. A purpose-built gradient descent optimisation routine was

used where the MSD-model upper mass acceleration was fitted to the measured trunk accelerometer

signal. Root mean squared errors (RMSE) were calculated to evaluate the accuracy of the trunk

accelerometry fitting and GRF predictions. In addition, MSD-model parameters were estimated from

fitting measured GRF, to explore the difference between model parameters estimated from trunk

accelerometry and measured GRF.

Results. Despite a good match between the measured trunk accelerometry and the MSD-model’s upper

mass acceleration (median RMSE between 0.16 and 0.22 g), poor GRF predictions (median RMSE

between 6.68 and 12.77 N·kg-1) were observed. In contrast, the MSD-model was able to replicate the

measured GRF with high accuracy (median RMSE between 0.45 and 0.59 N·kg-1) across running speeds

when model parameters were estimated from the measured GRF. The model parameters estimated from

measured trunk accelerometry under- or overestimated the model parameters obtained from measured

GRF, and generally demonstrated larger within parameter variations.

Discussion. Despite the potential of obtaining a close fit between the MSD-model’s upper mass

acceleration and the measured trunk accelerometry, the model parameters estimated from this process

were inadequate to predict GRF waveforms during slow to moderate speed running. We therefore

conclude that trunk-mounted accelerometry alone is inappropriate as input for the MSD-model to predict

meaningful GRF waveforms. Further investigations are needed to continue to explore the feasibility of

using body-worn micro sensor technology to drive simple human body models that would allow

practitioners and researchers to estimate and monitor GRF waveforms in field settings.
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18 Abstract

19 Background. Monitoring the external ground reaction forces (GRF) acting on the human body 

20 during running could help to understand how external loads influence tissue adaptation over 

21 time. Although mass-spring-damper (MSD) models have the potential to simulate the complex 

22 multi-segmental mechanics of the human body and predict GRF, these models currently require 

23 input from measured GRF limiting their application in field settings. Based on the hypothesis 

24 that the acceleration of the MSD-model’s upper mass primarily represents the acceleration of 

25 the trunk segment, this paper explored the feasibility of using measured trunk accelerometry to 

26 estimate the MSD-model parameters required to predict GRF during running.

27 Methods. Twenty male athletes ran at approach speeds between 2 - 5 m·s-1. Resultant trunk 

28 accelerometry was used as a surrogate of the MSD-model upper mass acceleration to estimate 

29 the MSD-model parameters required to predict GRF. A purpose-built gradient descent 

30 optimisation routine was used where the MSD-model upper mass acceleration was fitted to the 

31 measured trunk accelerometer signal. Root mean squared errors (RMSE) were calculated to 

32 evaluate the accuracy of the trunk accelerometry fitting and GRF predictions. In addition, MSD-

33 model parameters were estimated from fitting measured GRF, to explore the difference 

34 between model parameters estimated from trunk accelerometry and measured GRF. 

35 Results. Despite a good match between the measured trunk accelerometry and the MSD-

36 model’s upper mass acceleration (median RMSE between 0.16 and 0.22 g), poor GRF 

37 predictions (median RMSE between 6.68 and 12.77 N·kg-1) were observed. In contrast, the 

38 MSD-model was able to replicate the measured GRF with high accuracy (median RMSE between 

39 0.45 and 0.59 N·kg-1) across running speeds when model parameters were estimated from the 
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40 measured GRF. The model parameters estimated from measured trunk accelerometry under- 

41 or overestimated the model parameters obtained from measured GRF, and generally 

42 demonstrated larger within parameter variations.

43 Discussion. Despite the potential of obtaining a close fit between the MSD-model’s upper mass 

44 acceleration and the measured trunk accelerometry, the model parameters estimated from this 

45 process were inadequate to predict GRF waveforms during slow to moderate speed running. 

46 We therefore conclude that trunk-mounted accelerometry alone is inappropriate as input for 

47 the MSD-model to predict meaningful GRF waveforms. Further investigations are needed to 

48 continue to explore the feasibility of using body-worn micro sensor technology to drive simple 

49 human body models that would allow practitioners and researchers to estimate and monitor 

50 GRF waveforms in field settings.
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52 Introduction

53 Humans generate considerable forces against the ground during running to maintain an upright 

54 posture. This comes at the cost of equal and opposite ground reaction forces (GRF) acting on 

55 the body during every foot-ground contact (Cavanagh & Lafortune, 1980). These GRF put the 

56 body’s soft tissues (e.g. bones, cartilage, muscles, tendons and ligaments) under biomechanical 

57 stresses which over time are expected to lead to beneficial structural adaptations (Kibler, 

58 Chandler & Stracener, 1992; Dye, 2005). Inadequate recovery or repetitive GRF with excessive 

59 magnitudes can instead lead to negative adaptions and tissue damage (Kibler, Chandler & 

60 Stracener, 1992; Dye, 2005). The ability to monitor an athlete’s GRF during running can 

61 therefore help to better understand the relationship between the external forces experienced 

62 and soft-tissue adaptations (Vanrenterghem et al., 2017) ultimately helping to prevent 

63 musculoskeletal injury. 

64

65 Monitoring GRF during running is currently restricted to laboratory environments where GRF 

66 are measured with force platforms built into the ground, or derived from whole-body 

67 kinematics (Bobbert, Schamhardt & Nigg, 1991; Winter, 2005). With recent developments of 

68 low-cost sensor based micro technology (Camomilla et al., 2018), accelerometry has become a 

69 popular tool to evaluate running mechanics outside laboratory environments in long and 

70 middle distance running (Tao et al., 2012) and professional team sports (Akenhead & Nassis, 

71 2016). Accelerometry also offers opportunities to estimate GRF, and tibia-mounted 

72 accelerometry has for example been used as surrogate measure of peak GRF since the early 90s 

73 (Lafortune, 1991; Lafortune, Lake & Hennig, 1995). However, recent studies found weak to 

PeerJ reviewing PDF | (2018:06:29258:0:1:NEW 3 Jul 2018)

Manuscript to be reviewed



74 moderate linear relationships between peak accelerations measured from body-worn 

75 accelerometry (trunk- and tibia-mounted accelerometers) and peak whole-body accelerations 

76 measured from force platforms during running (Wundersitz et al., 2013; Nedergaard et al., 

77 2017; Raper et al., 2018). Since body-worn accelerometers only measure segmental 

78 acceleration, the use of a single accelerometer is inadequate to incorporate the complex multi-

79 segmental accelerations that result in specific GRF patterns (Nedergaard et al., 2017). Recent 

80 studies have indicated that from the combination of three or more body-worn inertial sensors 

81 and machine learning one can estimate GRF and knee joint moments with reasonable accuracy 

82 during running related locomotion (Johnson et al., 2018; Wouda et al., 2018), but the broader 

83 application of such approaches is constrained by the requirement of multiple sensors, machine 

84 learning tools, and large data sets. Therefore, if it were possible to estimate accurate GRF 

85 waveforms from a single body-worn sensor, it would provide practitioners and researchers with 

86 a useful tool to monitor the biomechanical load in field settings.

87  

88 Since the overall motion of the human body has a spring-like behaviour during running, simple 

89 mass-spring models, consisting of a single mass and spring, have been widely used to estimate 

90 the vertical GRF in field settings (e.g. Alexander, 1984; Blickhan, 1989; McMahon & Cheng, 

91 1990). Moreover, such models have been used in combination with trunk-mounted 

92 accelerometry to estimate the required model parameters (Gaudino et al., 2013; Buchheit, Gray 

93 & Morin, 2015). Unfortunately, the initial high-frequency impact peak typically observed in the 

94 GRF waveform during running, which is speculated to be linked with negative tissue 

95 adaptations and risk of injury (Nigg, Cole & Bruggemann, 1995; Hreljac, Marshall & Hume, 2000; 
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96 Milner et al., 2006), cannot be estimated with this oversimplified model (Alexander, Bennett & 

97 Ker, 1986; Bullimore & Burn, 2007). A more complex mass-spring-damper model (MSD-model) 

98 better replicates the GRF waveforms for running, including both impact and active peaks 

99 (Derrick, Caldwell & Hamill, 2000). This model consists of a lower mass connected to a spring in 

100 parallel with a damper, representing the support leg during foot-ground contact, and an upper 

101 mass and spring representing the dynamics of the rest of the body. However, the ability to use 

102 trunk-mounted accelerometry to estimate the required model parameters for this model is yet 

103 unknown.

104

105 The aim of this study was to examine if the acceleration of the MSD-model’s upper mass 

106 represents the acceleration of the trunk segment measured with trunk-mounted accelerometry 

107 during running. This hypothesis seems feasible, since the trunk segment represents half of the 

108 body mass (Dempster, 1955). If this provides a reasonable approximation, it might be feasible 

109 to estimate the required MSD-model parameters from trunk accelerometry to subsequently 

110 predict GRF from the MSD-model behaviour. Specifically, we therefore explored (1) the 

111 feasibility to estimate the MSD-model’s eight natural model parameters from measured trunk 

112 accelerometry, and (2) whether these model parameters in fact predict reasonably accurate 

113 GRF waveforms during running at slow to moderate running speeds.

114
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116 Materials & Methods

117 Subjects and protocol

118 Twenty healthy male athletes (age 22 ± 4 years, height 178 ± 8 cm, mass 76 ± 11 kg) who 

119 engaged in running related sports activities on a weekly basis volunteered to participate in this 

120 study. The institutional ethics committee at Liverpool John Moores University granted ethical 

121 approvalfor this study (ethics approval number: 09/SPS/010) in accordance with the 

122 Declaration of Helsinki, and written consent was obtained from all participants. After a warm-

123 up and an individual number of familiarisation trials the participants were asked to run over a 

124 force platform at different running speeds of 2, 3, 4 and 5 m·s-1 (± 5%) in a randomised 

125 condition order. Running speeds were measured with photocell timing gates (Brower Timing 

126 System, Utah, USA) positioned 2 m apart and 2 m from the centre of the force platform as 

127 described in Vanrenterghem et al. (2012). The participants completed four trials of each 

128 running speed, landing on the force platform with their dominant leg.

129

130 Experimental measurements

131 Resultant ground reaction forces were measured (GRF) with a sampling frequency of 3000 Hz 

132 from a 0.9 x 0.6 m2 Kistler force platform (9287C, Kistler Instruments Ltd., Winterthur, 

133 Switzerland). Resultant trunk accelerations (TrunkAcc) were simultaneously collected at 100 Hz 

134 using a tri-axial accelerometer (KXP94, Kionex, Inc., Ithaca, NY, USA) with an output range of ± 

135 13 g embedded within a commercial GPS device (MinimaxX S4, Catapult Innovations, Scoresby, 

136 Australia) with a total weight of 67 grams and 88 x 50 x 19 mm in dimension. The GPS device 

137 was positioned on the dorsal part of the upper trunk between the scapulae within a small 
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138 pocket of a tight fitted elastic vest according to the manufacturer’s recommendations (Boyd, 

139 Ball & Aughey, 2011). TrunkAcc and GRF were synchronised using a combination of time and 

140 event synchronisation as described in Nedergaard et al. (2017) and exported to Matlab (version 

141 R2016a, The MathWorks, Inc., Natick, MA, USA) where a 4th order recursive Butterworth low-

142 pass filter with a cut-off frequency of 20 Hz was applied to GRF and TrunkAcc. Only data from 

143 the stance phase were collected, where touch down and take off were defined when the 

144 vertical GRF crossed a 20 N threshold. 

145

146 Mass-spring-damper model 

147 The complex multi-segmental dynamics of the human body during stance phase were modelled 

148 as a passive MSD-model (Alexander, Bennett & Ker, 1986; Derrick, Caldwell & Hamill, 2000). 

149 This model consists of two masses (Fig. 1); a lower point mass (m2) on top of a linear spring (k2) 

150 in parallel with a damper (c) representing the support leg; an upper point mass (m1) 

151 representing the dynamics of the rest of the body and another linear spring (k1) connecting the 

152 two masses. 

153

154 The one-dimensional motion of the MSD-model was described by the acceleration of the two 

155 masses (Eqn. 5 and 6): 

156

157    (1)𝜆 =
𝑚1𝑚2

158 (2) 𝜔1
2

=
𝑘1𝑚1

=
(1 + 𝜆)𝑘1𝜆𝑀

159   (3) 𝜔2
2

=
𝑘2𝑚2

=
(1 + 𝜆)𝑘2𝑀
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160   (4)𝜁 =
𝑐

2 𝑘2𝑚2

161  (5)𝑎1 =‒ 𝜔1
2
(𝑝1 ‒ 𝑝2) + 𝑔

162 (6) 𝑎2 =‒ 𝜔2
2𝑝2 + 𝜔1

2𝜆(𝑝1 ‒ 𝑝2) ‒ 2𝜁𝜔2
2𝑣2 + 𝑔

163 (7)𝐺𝑅𝐹𝑚𝑜𝑑𝑒𝑙 =
𝑀𝜔2

1 + 𝜆(𝜔2𝑝2 + 2𝜁𝑣2)

164  

165 where p1, p2 v1, v2, a1, and a2 are the initial positions, velocities and, accelerations of the two 

166 masses (m1 and m2), respectively; λ is the mass ratio of the lower mass relative to the total 

167 body mass (Eqn. 1); ω1
2 and ω2

2 are the natural frequencies of the springs (Eqn. 2 and Eqn. 3) 

168 based on the linear spring constants (k1 and k2) and the mass of the two masses (m1 and m2); ζ 

169 is the damping ratio of the damper (Eqn. 4); and g is the acceleration from gravitational 

170 acceleration (-9.81 m·s-1). The GRF acting on the MSD-model is calculated as in Eqn. 7, where M 

171 is the sum of the two masses (i.e. total body mass):

172

173 Model parameter estimation 

174 To estimate the eight model parameters (p1, p2 v1, v2, ω1
2 ω2

2, ζ, λ), we used gravity corrected 

175 TrunkAcc from the stance phase as a surrogate of the MSD-model’s upper mass acceleration 

176 (Fig. 2A). For each trial, model parameters were optimised by fitting the MSD-model’s upper 

177 mass acceleration (a1) to the TrunkAcc signal. A purpose-built gradient descent optimisation 

178 routine in Matlab was used, where the two second-order differential equations of the MSD-

179 model’s motion (Eqn. 5 and 6) were transformed to four first-order differential equations and 

180 solved numerically with a Runge Kutta 4th order method. Root mean squared error (RMSE) 
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181 between TrunkAcc and a1 were calculated for every iteration to determine the optimal model 

182 parameter combination that best fitted TrunkAcc for the individual trials. The model 

183 parameters estimated from the TrunkAcc fitting were then used to predict the GRF from Eqn. 7. 

184 Furthermore, to help understand differences in estimated model parameters and the predicted 

185 versus measured GRF, we also estimated the eight model parameters by fitting the MSD-model 

186 to the measured GRF (Fig. 2B), similar to the approach previously described by Derrick et al. 

187 (2000).   

188

189 Statistical analysis

190 Measured and modelled GRF were normalised to the participants’ mass. RMSE between 

191 TrunkAcc and a1, and between measured GRF and predicted GRF, were calculated to evaluate 

192 the accuracy of the TrunkAcc fitting and the predicted GRF, respectively. RMSE median and 

193 interquartile range (25th to 75th percentile) were calculated to determine the variation in the 

194 model’s accuracy within and across running speeds. Similarly, the median and interquartile 

195 range (25th to 75th percentile) of the estimated model parameters were calculated to explore 

196 the variation within and across running speeds for the model parameters estimated both from 

197 measured TrunkAcc and GRF.            

198
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200 Results

201 The first step was to estimate the required model parameters that fit the MSD-model’s upper 

202 mass acceleration to the measured TrunkAcc signal. The MSD-model was able to fit the 

203 measured TrunkAcc with good accuracy across running speeds, though a1 systematically 

204 underestimated the magnitude of the first peak observed in the accelerometry signal (Fig. 3A). 

205 The median RMSE (interquartile range 25th to 75th percentile) of the TrunkAcc fitting increased 

206 from 0.16 (0.12; 0.22) g at the slowest running speed to between 0.21 (0.16; 0.26) g and 0.22 

207 (0.16; 0.30) g for three faster running speeds. Though similar median RMSE values were 

208 observed across the three fastest running speeds, the interquartile range increased with 

209 increased running speeds (Fig. 3A). Despite the good match between a1 and TrunkAcc, poor 

210 GRF predictions were observed across running speeds (Fig. 3B) and the median RMSE of the 

211 predicted GRF systematically increased with running speeds, from 6.68 (3.81; 15.30) N·kg-1 at 2 

212 m·s-1 to 12.77 (7.78; 27.22) N·kg-1 at 5 m·s-1. 

213

214 Since the TrunkAcc estimated parameters resulted in poor GRF predictions, we next estimated 

215 the model parameters by fitting the MSD-model to the measured GRF waveforms (Fig. 2B) to 

216 determine if there was any difference between the two sets of model parameters and to 

217 compare the upper mass acceleration to the measured TrunkAcc. The MSD-model was able to 

218 replicate the measured GRF with high accuracy when model parameters were estimated to 

219 directly fit the measured GRF (Fig. 4B). This was reflected in the low RMSE median and 

220 interquartile ranges observed across all running speeds (2 m·s-1: 0.45 (0.36; 0.60); 3 m·s-1: 0.47 

221 (0.37; 0.61); 4 m·s-1: 0.53 (0.39; 0.66); 5 m·s-1: 0.59 (0.46; 0.73); All Speeds: 0.51 (0.39; 0.64) 
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222 N·kg-1). However, the MSD-model’s upper mass acceleration profiles then deviated 

223 considerably from the acceleration profiles measured with trunk accelerometry (Fig. 4A). The 

224 model parameters also differed considerably from those estimated from fitting measured 

225 TrunkAcc (Fig. 4C and 4D). Namely, the model parameters demonstrated smaller within 

226 parameter variation, which was especially evident for p2 and v2. Also, lower v1 (median 

227 difference 0.47 m·s-1) and higher v2 (median difference -1.73 m·s-1) values were observed across 

228 running speeds.       

229
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231 Discussion

232 This study illustrates that the MSD-model’s upper mass acceleration could be fitted to the 

233 measured trunk accelerometry with high accuracy, but the model parameters estimated from 

234 this process did not lead to accurate predictions of GRF waveforms across a range of slow to 

235 moderate running speeds. Further analysis of the MSD-model behaviour when fitting to the 

236 measured GRF revealed a considerable discrepancy in model parameters compared to when 

237 fitting the MSD-model to measured trunk accelerometry signals. These results demonstrate 

238 that our initial hypothesis that the MSD-model’s upper mass acceleration primarily represents 

239 the acceleration of the trunk was false. 

240

241 Model parameter estimation 

242 The eight model parameters are fundamental to calculating the GRF acting on the MSD-model, 

243 and though fitting TrunkAcc was successful, the model parameters estimated from this 

244 approach resulted in poor GRF predictions. Based on the equation of the upper mass 

245 acceleration (Eqn. 5) and the model parameters estimated from TrunkAcc, it seems that the 

246 MSD-model was able to fit the TrunkAcc by keeping the initial position of the upper mass (p1) 

247 and lower mass (p2) low, and by keeping the spring stiffness of the upper spring (ω1
2) low. 

248 Whereas p1 has minor influence on the predicted GRF, the velocity of the upper mass at initial 

249 contact (v1) is indirectly influenced by changes in the initial upper mass position ( . 𝑣1 =  𝑝1)

250 Derrick et al. (2000) found that decreased v1 has a large impact on the duration of the stance 

251 phase and therefore could have contributed to the overestimation of foot-ground contact (Fig. 

252 3B). Similarly, the MSD-model decreased the spring stiffness of the upper spring (ω1
2) to better 
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253 fit the two acceleration peaks typically observed in the TrunkAcc data, which has previously 

254 been shown to increase the duration of the stance phase (Derrick, Caldwell & Hamill, 2000). 

255 Furthermore, the MSD-model lowered the initial position of the lower mass (p2), which 

256 previously has been shown to both increase the GRF at touch down and decrease the 

257 magnitude of the impact peak (Derrick, Caldwell & Hamill, 2000). We therefore believe that the 

258 high GRF values observed in our GRF predictions at touch down (Fig. 3B) were primarily related 

259 to the lower initial position of the lower mass (p2) required to fit the upper mass acceleration to 

260 the TrunkAcc. Finally, the MSD-model also kept the damping ratio (ζ) low to better fit the 

261 magnitude of the two acceleration peaks in the TrunkAcc. Decreasing the damping ratio, has 

262 however previously been shown to increase the oscillation in the model’s GRF (Alexander, 

263 Bennett & Ker, 1986; Derrick, Caldwell & Hamill, 2000), and may therefore explain why our GRF 

264 predictions to a large extent include oscillating characteristics (Fig. 3B).     

265

266 The comparison between model parameters estimated from the TrunkAcc and parameters 

267 estimated from measured GRF, clearly demonstrates that the model is unsuitable for predicting 

268 GRF from TrunkAcc. A closer look at the model parameters estimated from measured GRF, 

269 showed that the median position and velocity of the lower mass (p2 and v2) was constant across 

270 running speeds and only varied marginally within running speeds (Fig. 2C). In addition, only 

271 small differences in median damping ratios (ζ) were observed between running speeds in this 

272 study (ζ between 0.31 and 0.39 au). It was in fact kept constant (ζ = 0.35 au) in the study by 

273 Derrick et al. (2000). Based on these observations we explored the effect of keeping p2, v2, and ζ 

274 constant for all trials (using the median parameter estimated from fitting GRF across running 
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275 speeds), and for the remaining five model parameters use the trial specific parameters 

276 estimated from fitting a1 to TrunkAcc to re-calculate the predicted GRF (Fig. S1). Whilst this 

277 decreased the variability of the GRF prediction (RMSE interquartile range) both within and 

278 across running speeds, only minor improvements were observed in the GRF prediction. This 

279 indicated that keeping selected model parameters constant would not substantially improve 

280 the GRF prediction in future studies. Furthermore, when selected model parameters were kept 

281 constant, the original interaction between the model parameters estimated from the TrunkAcc 

282 fitting was broken. In other words, such an approach is like solving a jigsaw with pieces from 

283 another jigsaw.    

284

285 MSD-model hypothesis

286 If the trunk accelerometry data accurately represents the model’s upper mass acceleration one 

287 would at least expect that the model parameters related to the motion and stiffness of the 

288 upper mass and spring (p1, v1, ω1
2) would be close to the model parameters estimated when 

289 fitting measured GRF. This was however not the case, and therefore naturally raises the 

290 questions as to whether the upper mass acceleration is equivalent to the acceleration 

291 measured from trunk accelerometry during running. The trunk accelerometry driven MSD-

292 model approach introduced in this study is based on the hypothesis that the model’s upper 

293 mass primarily represents the mass and motion of the trunk segment (Alexander, Bennett & 

294 Ker, 1986; Derrick, Caldwell & Hamill, 2000). Our results suggest however that this is not the 

295 case, and that independent accelerations of other body segments (e.g. the swing leg and arms) 

296 significantly contribute to the MSD-model’s upper mass accelerations. We therefore conclude 
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297 that the primary model hypothesis for this study was false, and that trunk-mounted 

298 accelerometry alone is inappropriate as input for the MSD-model to predict meaningful GRF 

299 waveforms. 

300

301 A high initial peak related to the attenuation of the shock impact from the foot’s collision with 

302 the ground (Hamill, Derrick & Holt, 1995; Derrick, 2004) dominated the TrunkAcc signals across 

303 running speeds. In contrast, a higher second peak related to the COM displacement during the 

304 stance phase dominated the upper mass acceleration when the MSD-model was fitted to 

305 measured GRF. This raised the technical question as to whether the poor GRF predictions 

306 observed from the measured accelerometer signal were partly a consequence of an artificially 

307 high frequency of that initial peak and whether the application of lower filter cut-off 

308 frequencies (cut-off frequencies of 20 Hz in the present study) would improve GRF predictions. 

309 To explore this, trunk accelerometry data of 10 representative participants was low-pass 

310 filtered with cut-off frequencies of 15, 10 and 5 Hz (Fig. S2). Whilst low cut-off frequencies 

311 (especially 10 and 5 Hz) to a large extent successfully removed the initial high-frequency peak in 

312 the accelerometry signal, and the RMSE between TrunkAcc and upper mass acceleration 

313 decreased, it only had a minor influence on the RMSE of the predicted GRF across running 

314 speeds (Fig. S2). Therefore, accelerometry post-processing did not improve the GRF predictions 

315 from TrunkAcc. This suggests that the trunk accelerometry signal in itself was not the main 

316 reason for the poor GRF predictions, but rather an incorrect hypothesis that the MSD-model’s 

317 upper mass acceleration primarily represents the acceleration of the trunk segment.  

318  
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319 Replicating GRF from measured GRF

320 Although TrunkAcc was unsuccessful in predicting GRF during running with a simple MSD-

321 model, the MSD-model could successfully replicate measured GRF during slow to moderate 

322 running speeds. In fact, the inclusion of all eight model parameters in our optimisation routine, 

323 compared to only optimising the spring constants of the upper and lower spring (k1 and k2) and 

324 the position of the lower mass (p2) (Derrick et al., 2000) allowed us to replicate the measured 

325 GRF with higher accuracy. These findings illustrate that despite the MSD-model simplicity it has 

326 the ability to replicate and potentially predict GRF for a range of running speeds. Since the 

327 model parameters associated with the lower mass and spring are crucial to predict GRF (Eqn. 

328 7), this may open opportunities to use segmental kinematics and/or accelerometry from lower 

329 extremities to estimate model parameters. Recent studies have for example shown promising 

330 results in predicting GRF during sprinting, in high level sprinters, when contact and flight time, 

331 in combination with kinematics from the ankle were used as input for a two-mass model 

332 (Udofa, Ryan & Weyand, 2016; Clark, Ryan & Weyand, 2017). Future studies is however still 

333 need to explore the use of body-worn micro sensor technology to drive simple human body 

334 models and predict GRF waveforms for a range running speeds. 

335

336 Model limitations

337 A limitation with the MSD-model and the associated model parameters is that multiple 

338 parameter combinations exist when fitting the MSD-model to measured GRF waveforms. Whilst 

339 it could be of interest to further explore the physical meaning of the individual model 

340 parameters and their interactions, this was not possible due to the existence of multiple model 
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341 parameter solutions. Secondly, the MSD-model is a one-dimensional model, and therefore only 

342 allows the magnitude of the GRF to be estimated. We decided to predict the magnitude of the 

343 resultant GRF in our study, considering that we wanted to estimate the overall external 

344 biomechanical loading on the body, however we accept that others may prefer to predict the 

345 magnitude of the vertical GRF only. Ultimately, we believe that it is important to recognise that 

346 the MSD-model approach omits any direction specific load variations across running speeds, 

347 and that these may well be relevant in how the musculoskeletal tissues are exposed to stresses. 

348 Finally, the MSD-model is a passive elastic model and therefore does not account for additional 

349 energy generated by the body’s “active” structures (muscles). Whilst a more complex model 

350 could account for this (Zadpoor & Nikooyan, 2010; Nikooyan & Zadpoor, 2011), it is 

351 questionable if this would allow for better GRF predictions from TrunkAcc. The complexity of 

352 such model would probably also defeat the overall purpose of using a simple model that is still 

353 applicable in field settings.

354

355 Conclusions

356 In this study, we demonstrated that the upper mass acceleration of a simple MSD-model can be 

357 fitted to measured trunk accelerometry signals with high accuracy during running at various 

358 speeds, but that the ensuing model parameters do not deliver accurate predictions of GRF 

359 waveforms. Despite the convenient hypothesis that the MSD-model’s upper mass acceleration 

360 primarily represents the acceleration of the trunk, our results showed that this hypothesis is 

361 violated too much to still predict meaningful GRF waveforms. Nevertheless, further studies 

362 should continue to explore the use of data from wearable micro sensor technology to drive 
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363 simple human body models that could allow us to estimate GRF waveforms in field settings. 

364 This would allow researchers and practitioners to better monitor the external biomechanical 

365 loads to which the human body is exposed during running locomotion, ultimately supporting a 

366 general quest towards field-based monitoring of tissue load-adaptation processes. 

367
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Figure 1

An illustration of the human body represented as a MSD-model.

The MSD-model consists of a lower mass spring damper element (m2, k2, c) representing the

support leg of the human body and an upper mass spring element (m1, k1) representing the

rest of the human body.
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Figure 2

Estimating MSD-model parameters by fitting the MSD-model to measured trunk

accelerometry and measured GRF.

The top panel (A) illustrates the trunk driven MSD-model where measured trunk

accelerometry (TrunkAcc) for the stance phase, is used to estimate the eight model

parameters, based on the hypothesis that the MSD-model’s upper mass acceleration (a1)

primarily represents TrunkAcc, before GRF is calculated from the model parameter

combination that best fitted TrunkAcc. The bottom panel (B) displays the traditional MSD-

model approach, where the eight model parameters are estimated by fitting the model’s GRF

to the measured GRF.
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Figure 3

Representative examples of the trunk accelerometry fitting and GRF prediction, and the

median RMSE across running speeds.

Representative examples of fitting the upper mass acceleration to the trunk accelerometry

signal across running speeds (A), and the measured and predicted GRF for the same trials

(B). The RMSE for the trunk accelerometry fitting and GRF predictions are displayed in

brackets for the individual examples. The boxplots on the right side display the RMSE

median, and 25th and 75th interquartile range for the trunk accelerometry fitting and GRF

prediction respectively across running speeds. Extreme outliers were removed from the

boxplots.
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Figure 4

Representative examples of the upper mass acceleration, GRF and median model

parameters from the TrunkAcc and GRF fitting.

Representative examples of the measured trunk accelerometry and the MSD-model’s upper

mass acceleration (A), and the measured, predicted and replicated GRF (B). The RMSE for the

trunk accelerometry fitting and GRF predictions are displayed in the brackets for the

individual examples. The inserted polar plots display the estimated model parameters (in

unscaled values) from the two approached for the representative examples. The bottom two

panels (C and D) display the median, 25th and 75th interquartile range for the model

parameters estimated from measured trunk accelerometry and GRF respectively across

running speeds. Extreme outliers were removed from the boxplots.
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