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ABSTRACT

Background. Lepidosaurs, a group including rhynchocephalians and squamates, are
one of the major clades of extant vertebrates. Although there has been extensive phylo-
genetic work on this clade, its interrelationships are a matter of debate. Morphological
and molecular data suggest very different relationships within squamates. Despite
this, relatively few studies have assessed the utility of other types of data for inferring
squamate phylogeny.

Methods. We used developmental sequences of 20 events in 29 species of lepidosaurs.
These sequences were analysed using event-pairing and continuous analysis. They
were transformed into cladistic characters and analysed in TNT. Ancestral state
reconstructions were performed on two main phylogenetic hypotheses of squamates
(morphological and molecular).

Results. Cladistic analyses conducted using characters generated by these methods do
not resemble any previously published phylogeny. Ancestral state reconstructions are
equally consistent with both morphological and molecular hypotheses of squamate
phylogeny. Only several inferred heterochronic events are common to all methods and
phylogenies.

Discussion. Results of the cladistic analyses, and the fact that reconstructions of
heterochronic events show more similarities between certain methods rather than
phylogenetic hypotheses, suggest that phylogenetic signal is at best weak in the studied
developmental events. Possibly the developmental sequences analysed here evolve too
quickly to recover deep divergences within Squamata.

Subjects Developmental Biology, Evolutionary Studies, Zoology

Keywords Systematics, Phylogeny, Squamates, Morphology vs molecules, Heterochrony,
Evo-devo

INTRODUCTION

With over 10,000 species, Squamata (lizards, snakes and amphisbaenians) are one of
the most species-rich extant tetrapod lineages (Uetz, Freed ¢ Hosek, 2016). However,
our understanding of their evolutionary history is confounded by the conflict between
phylogenetic hypotheses based on morphology and molecular data (e.g., Losos, Hillis ¢
Greene, 2012). Morphological analyses suggest that the first divergence within Squamata
was between Iguania (iguanas, agamas, chameleons and kin) and Scleroglossa (all other
lizards and snakes) (e.g., Estes, de Queiroz ¢» Gauthier, 1988; Conrad, 2008; Gauthier et al.,
2012), while molecular studies indicate that iguanians are highly derived lizards, closely
related to anguimorphs (e.g., monitor lizards) and snakes, and that limbless dibamids or
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gekkotans (geckos and kin, sometimes also including dibamids) are the first-diverging
branch of squamates (e.g., Townsend et al., 2004; Vidal ¢» Hedges, 2005; Wiens et al., 2010,
Wiens et al., 2012; Pyron, Burbrink ¢ Wiens, 2013). Increasing the number of taxa and
characters in these analyses has not led to an improvement of our understanding of
squamate phylogeny, but rather has only increased the discordance between the hypotheses
based on those two lines of evidence. Combined morphological and molecular analyses
(e.g., Wiens et al., 2010; Reeder et al., 2015) generally favour the molecular topology (but
see Lee, 2005). However, some authors argue that molecular data may not be ideal for
resolving the higher-level phylogeny of squamates because of the large genetic distance
between squamates and their closest living relative—the tuatara (Sphenodon punctatus),
the only extant rhynchocephalian—and thus the only reasonable proximal outgroup to
Squamata in phylogenetic analyses (McMahan et al., 2015). Despite numerous publications
on this subject (Gauthier et al., 2012; Losos, Hillis ¢~ Greene, 2012; Reeder et al., 2015), the
debate continues and still new approaches to the problem are being taken (McMahan et
al., 2015; Harrington, Leavitt & Reeder, 2016; Pyron, 2017).

Developmental data may be useful for phylogenetic inference (e.g., Laurin ¢ Germain,
2011) but they rarely have been used in squamate phylogenetics. Notable exceptions are
the studies of Maisano (2002) and Werneburg ¢» Sanchez-Villagra (2015), using ossification
sequences. The former found that these sequences are useful for determininig relatively
shallow divergences but failed to recover deeper nodes, possibly because of their high
rate of evolution (Maisano, 2002). Werneburg ¢~ Sdnchez-Villagra (2015) found that
developmental data were most congruent with the close relationship between snakes
and varanids, as postulated by some morphological studies (e.g., Lee, 1997) but also some
combined morphological and molecular analyses (e.g., Lee, 2005). Sequences of other
developmental traits were studied by Andrews, Brandley ¢» Greene (2013) but the authors
regarded relationships of squamates as “well defined” and reconstructed the ancestral
states only on the molecular topologies. Moreover, their study did not consider the tuatara,
a taxon critical in studying lepidosaur evolution. We attempt to supplement their data
with the developmental sequence of the tuatara and reconstruct ancestral states using both
molecular and morphological topologies. We also assess phylogenetic utility of timing of
organogenesis using several different methods.

MATERIALS & METHODS

Character construction and cladistic analyses

Developmental sequences of 20 characters in 21 species representing most major squamate
lineages (Tables 1 and 2) were obtained from Andrews, Brandley & Greene (2013).
Developmental sequences of seven other squamate species were taken from the literature
(Table 1). The developmental sequence of the tuatara was compiled from Dendy (1899) and
Sanger, Gredler ¢ Cohn (2015) (see also Moffat, 1985). These sequences were transformed
into continuous characters, where the first event has a value of 0, and the last one—a value
of 1 (Germain ¢ Laurin, 2009; Laurin ¢ Germain, 2011). These values constituted the
basis for cladistic characters, which were created following Werneburg ¢ Sanchez-Villagra
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Table 1 Species included in this study, their taxonomic position and sources of information on their development.

Species

Higher taxon

Source

Sphenodon punctatus (Gray, 1842)

Amalosia lesueurii (Duméril & Bibron, 1836)
Strophurus williamsi (Kluge, 1963)
Eublepharis macularius (Blyth, 1854)

Tarentola annularis (Geoffroy Saint-Hilaire, 1827)
Chondrodactylus turneri (Gray, 1864)

Gehyra variegata (Duméril & Bibron, 1836)
Mabuya sp.

Calyptommatus sinebrachiatus Rodrigues, 1991
Nothobachia ablephara Rodrigues, 1984
Zootoca vivipara (Lichtenstein, 1823)

Python sebae (Gmelin, 1789)

Thamnophis sirtalis (Linnaeus, 1758)

Boaedon fuliginosus (Boie, 1827)

Vipera aspis (Linnaeus, 1758)

Varanus rosenbergi Mertens, 1957

Varanus indicus (Daudin, 1802)

Varanus panoptes Storr, 1980

Iguana iguana (Linnaeus, 1758)

Uta stansburiana Baird & Girard, 1852

Anolis sagrei Duméril & Bibron, 1837
Liolaemus gravenhorsti (Gray, 1845)

Liolaemus tenuis (Duméril & Bibron, 1837)
Tropidurus torquatus (Wied-Neuwied, 1820)
Chamaeleo calyptratus Duméril & Duméril, 1851
Furcifer lateralis (Gray, 1831)

Pogona vitticeps (Ahl, 1926)

Calotes versicolor (Daudin, 1802)

Agama impalearis Boettger, 1874

Rhynchocephalia: Sphenodontidae

Gekkota: Diplodactylidae

Gekkota: Diplodactylidae

Gekkota: Eublepharidae

Gekkota: Phyllodactylidae

Gekkota: Gekkonidae

Gekkota: Gekkonidae

Scincoidea: Scincidae

Lacertiformes: Gymnophthalmidae
Lacertiformes: Gymnophthalmidae
Lacertiformes: Lacertidae

Serpentes: Pythonidae

Serpentes: Colubridae

Serpentes: Lamprophiidae

Serpentes: Viperidae

Anguimorpha: Varanidae
Anguimorpha: Varanidae
Anguimorpha: Varanidae

Iguania: Pleurodonta: Iguanidae
Iguania: Pleurodonta: Phrynosomatidae
Iguania: Pleurodonta: Dactyloidae
Iguania: Pleurodonta: Liolaemidae
Iguania: Pleurodonta: Liolaemidae
Iguania: Pleurodonta: Tropiduridae
Iguania: Acrodonta: Chamaeleonidae
Iguania: Acrodonta: Chamaeleonidae
Iguania: Acrodonta: Agamidae
Iguania: Acrodonta: Agamidae

Iguania: Acrodonta: Agamidae

Dendy (1899), Moffat (1985) and
Sanger, Gredler & Cohn (2015)

Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)

Andrews, Brandley & Greene (2013)*

Khannoon (2015)

Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)
Boughner et al. (2007)

Andrews, Brandley & Greene (2013)
Boback, Dichter & Mistry (2012)
Andrews, Brandley & Greene (2013)
Andrews, Brandley ¢ Greene (2013)
Gregorovicova et al. (2012)

Werneburg, Polachowski & Hutchinson (2015)

Lima (2015)

Andrews, Brandley & Greene (2013)
Andrews, Brandley ¢ Greene (2013)
Andrews, Brandley ¢ Greene (2013)
Andrews, Brandley & Greene (2013)
Py-Daniel et al. (2017)

Andrews, Brandley & Greene (2013)
Andrews, Brandley & Greene (2013)
Andrews, Brandley ¢ Greene (2013)
Andrews, Brandley & Greene (2013)
Andrews, Brandley ¢ Greene (2013)

Notes.

2Wise, Vickaryous & Russell (2009) presented slightly different developmental table for Eublepharis macularius but we used data from Andrews, Brandley ¢ Greene (2013), as they

span the whole development.

(2015)—values between 0 and 0.09 were coded as 0, between 0.1 and 0.19 were coded
as 1, and so on. The missing data were coded as unknown (?), while limb characters in

snakes were coded as inapplicable (-). Cladistic analyses employing these characters were
conducted in TNT v. 1.1 (Goloboff, Farris ¢ Nixon, 2003; Goloboff, Farris & Nixon, 2008),
using the traditional search option, with 10 replications of Wagner trees. These trees were

held in RAM and subjected to tree bisection reconnection, holding 10 trees per replicate.

In the first analysis, all characters were unordered (non-additive), and in the second one,

all were ordered (additive) (see Werneburg & Sanchez-Villagra, 2009; Laurin & Germain,

2011). In both analyses, Sphenodon was used as the outgroup.
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Table 2 Developmental events used in this study. From Andrews, Brandley ¢ Greene (2013).

Number Event

1 Primary optic vesicle

2 Otic placode

3 Allantois bud (small thick-walled out-pouching)

4 Torsion complete

5 Secondary optic vesicle

6 Hyomandibular slit

7 Allantois vesicle (thin-walled bag)

8 Choroid fissure open (horseshoe-shaped)

9 Limb ridge

10 Allantois contacts chorion (allantois flattened above embryo like umbrella)
11 Maximum pharyngeal slits

12 Limb Apical Ectodermal Ridge (AER)

13 Hemipenal buds form on cloacal lip

14 Three-segmented limb (stylo-, zeugo-, autopodium)
15 Jaw initiated

16 Eyelid forms as a thin ribbon-like sheet of tissue overlapping the eyeball
17 Pharyngeal slits closed

18 Digits differentiated in limb paddle

19 Jaw complete; mandible meets tip of maxilla

20 Scale anlagen visible

Another set of cladistic characters was created using the event-pairing method
(Smith, 1997; Velhagen Jr, 1997; Jeffery et al., 2002a; Jeffery et al., 2005). Comparing 20
developmental events in 29 species resulted in 190 event pairs. These characters were
analysed in the same way as continuous characters.

With these cladistic characters and files with both molecular and morphological topology
in memory, Templeton test (Templeton, 1983) was performed in TNT (using a script written
by Alexander Schmidt-Lebuhn: https://www.anbg.gov.au/cpbr/tools/templetontest.tnt).
Four replications were conducted: using either ordered or unordered characters; and
employing continuous or event-paired characters.

Ancestral state reconstruction and heterochronic events

Reconstruction of ancestral states was performed in Mesquite v. 3.2 (Maddison ¢ Maddison,
2017). Developmental sequences were mapped on two competing phylogenetic hypotheses
of lepidosaurs—first one, from Pyron, Burbrink ¢» Wiens (2013), using seven nuclear and
five mitochondrial genes, and the second one, from Gauthier et al. (2012), the largest
morphological analysis to date. Ancestral states were reconstructed using both maximum
parsimony and maximum likelihood for event-paired data and square-changed parsimony
for continuous data. The branch length may have a significant effect on reconstruction
of ancestral states (e.g., Andrews, Brandley ¢ Greene, 2013; Boyd, 2015), so analyses using
maximum likelihood and square-changed parsimony were performed on both molecular
and morphological topologies. In the first analysis, all branches were given an equal
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Table 3 Calibration points for the fossil time-calibrated analyses. See the ‘Materials & Methods’ section for details.

Taxon Age References Notes
Sauria 256 Ma Ezcurra, Scheyer & Butler (2014) and
Ezcurra (2016)

Rhynchocephalia 238 Ma Jones et al. (2013)

Iguania 105 Ma (99 + 3 + 3) Daza et al. (2016) Much older, Jurassic, fossils may rep-
resent iguanians (e.g., Evans, Prasad
& Manhas, 2002) but their systematic
position is ambiguous (e.g., Jones et
al., 2013).

Acrodonta 102 Ma (99 + 3) Daza et al. (2016)

Chamaeleonidae 99 Ma Daza et al. (2016)

Agamidae 99 Ma Daza et al. (2016)

Chamaeleo 13 Ma Bolet ¢ Evans (2014)

Tropiduridae ca. 15 Ma Conrad, Rieppel & Grande (2007)

Iguanidae 56 Ma Nydam (2013)

Anolis 20 Ma Sherratt et al. (2015)

Gekkota 150 Ma Gauthier et al. (2012) and Caldwell et See also Daza, Bauer & Snively (2014)

al. (2015)

Gekkonidae 15 Ma Daza, Bauer & Snively (2014)

Diplodactylidae 20 Ma Daza, Bauer & Snively (2014)

Serpentes 167 Ma Caldwell et al. (2015)

Pythonidae 35 Ma Head (2015)

Colubridae 31 Ma Head, Mahlow ¢ Miiller (2016)

Lamprophiidae 17 Ma Head, Mahlow ¢ Miiller (2016) Based on the elapid Naja romani
(Head, Mahlow ¢ Miiller 2016).

Viperidae 20 Ma Head, Mahlow & Miiller (2016)

Anguimorpha 145 Ma Head (2015) and Caldwell et al.

(2015)

Lacertiformes 99 Ma Daza et al. (2016)

Gymnophthalmidae 66 Ma Venczel & Codrea (2016) Gymnophthalmid fossils are currently
unknown (Nydam & Caldwell, 2015)
but teiids are universally accepted
as gymnophthalmid sister group, so
the oldest known teiid is used to pro-
vide a calibration point for gymnoph-
thalmids in the analyses.

Scincoidea 150 Ma Evans ¢ Chure (1998) and Gauthier See also Conrad (2008) and Tatanda

etal. (2012)

(2016 )-regardless of that, the old-
est known scincoids seem to be Late
Jurassic in age.

length (=1), while in the second, the branch lengths were calibrated to reflect the fossil

record of a given group. The oldest-known fossil of a total group was used to calibrate

the tree rather than that of a crown group (Table 3). Only fossils unquestionably placed

within a given group were included. When the fossil record of a group was unknown

(mostly in relatively recently diverged species), the branch length was set, arbitrarily, as

3. Square-changed parsimony reconstruction using continuous data was performed using

Skawinski and Borczyk (2017), PeerJ, DOI 10.7717/peerj.3262

5/23


https://peerj.com
http://dx.doi.org/10.7717/peerj.3262

Peer

root node reconstruction in PDAP:PDTREE module of Mesquite (Midford, Garland Jr

¢ Maddison, 2011). This module calculates 95% confidence intervals (Garland Jr ¢ Ives,
2000) for each character of a hypothetical ancestor of all taxa included in a tree (in this case,
ancestral lepidosaur). A statistically significant heterochronic event occurs when a value of
character state of a given taxon is beyond the confidence interval. In the second analysis,
Sphenodon was pruned from the tree, and reconstruction was made for the ancestral
squamate and compared to the values of terminal taxa.

Event-pair synapomorphies were mapped on both topologies using synapomorphy
mapping in TNT. These synapomorphies were subjected to event-pair cracking, following
the procedure described in detail by Jeffery et al. (2002a). Only deviations from their
methods are described below. Clades supported by only one event-pair synapomorphy,
two synapomorphies involving four different events and so on were excluded because
the number of developmental changes was insufficient for determining the background
pattern and heterochronies. In the ordered dataset, when degree of change was ambiguous
(e.g., from 0 to 1 or 2), a mean was taken (in this example, 1.5). Characters in which the
direction of change could not be unambiguously reconstructed (i.e., from 1 to 0 or 2) were
excluded from further analysis. This should not have significant effect on the analysis, as
there was only a few such characters (Tables S1-58). Only events with total relative change
(TRC) beyond the 95% confidence interval calculated for the mean TRCs at a given node
were regarded as heterochronic. This is more a conservative approach than the one taken
by Jeffery et al. (2002a) but will make the analysis more comparable to the continuous
analysis described above.

RESULTS

Cladistic analyses

Cladistic analyses conducted using the transformed continuous data generated trees that
are not similar to trees obtained in either morphological or molecular analyses. Analysis
using unordered characters yielded 214 most parsimonious trees (MPT; tree length = 109,
consistency index = 0.560, retention index = 0.628), the strict consensus tree of which is
almost completely unresolved. This analysis failed to recover clades of very closely related
species such as Liolaemus (Fig. 1A). When all characters were ordered, it resulted in 174
most parsimonious trees (TL = 133, CI = 0.459, RI = 0.625). The strict consensus tree is
mostly unresolved—the only groups that were monophyletic in all MPTs are Liolaemus,
Tropidurus + Strophurus, Calyptommatus + Anolis and a clade including Uta, Agama,
Furcifer, Mabuya, Gehyra, Chamaeleo and Zootoca. A 50% majority rule tree does not
resemble published morphological or molecular phylogenies (Fig. 1B).

Similar to the continuous dataset, the event-paired data did not result in a topology
matching any previously published phylogeny. Analysis of unordered characters generated
10 MPTs (TL = 185, CI =0.530, RI = 0.552). In the strict consensus tree Furcifer and
Varanus indicus are in trichotomy with the clade including all other squamates. This clade
is divided into a group containing seven species of iguanians, gekkotan Strophurus, snake
Thamnophis, scincoid Mabuya and lacertiform Zootoca, and the second group to which all
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Figure 1 Results of the cladistic analysis using characters from the continuous analysis. Strict consen-
sus tree. (A) Unordered characters; TL = 109, CI = 0.560, RI = 0.628. (B) Ordered characters; TL = 133,
CI = 0.459, RI = 0.625. Colour represents clade to which given species belongs.

other squamates belong (Fig. 2A). Analysis using ordered characters yielded 16 MPTs (TL
= 220, CI =0.464, RI =0.599). The strict consensus tree is poorly resolved but excluding
Varanus indicus from it significantly improves resolution. After this, squamates are divided
into two clades—the first one includes eight species of iguanians, Thammnophis and Mabuya,
while the second group includes all other squamates (Fig. 2B).

Mapping of continuous characters indicates slight differences in tree length between
morphological and molecular topologies. With all branches being assigned equal length
(=1), the former is 1.49630768 steps long and the latter—1.51610078. With the fossil-
calibrated tree, the morphological topology is 0.19257679 steps long and molecular—
0.17638729. Mapping of unordered event-paired characters gives the molecular topology
a length of 250 steps and the morphological—252 steps. With ordered characters, the

molecular topology is 322 steps long, while the morphological is 327 steps long.
Neither replication of the Templeton test detected any statistically significant differences
between morphological and molecular phylogenies under both present continuous and

event-paired character datasets (p > 0.05 in all cases).
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Zootoca Uta
Mabuya Calotes
Thamnophis Agama
Calotes Mabuya
Uta Chamaeleo
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Liolaemus tenuis Liolaemus tenuis
| Chamaeleo Zootoca
Tropidurus Vipera
Pogona
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Nothobachia

Calyptommatus

Rhynchocephalia [~ Nothobachia Varanus panoptes
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f— Anolis

. . _— Anolis

Scincoidea |
Lacertlformes L python
Anguimorpha Python

}— Boaedon
Serpentes Boaedon

k. Varanus panoptes

Figure 2 Results of the cladistic analysis using characters from event-pairing. Strict consensus tree (in
B after excluding Varanus indicus). (A) Unordered characters; TL = 185, CI = 0.530, RI = 0.552. (B) Or-
dered characters; TL = 220, CI = 0.464, RI = 0.559. Colour represents clade to which given species be-
longs.

Developmental diagnoses

There are several event-pair synapomorphies diagnosing some higher-level taxa (i.e.,
family-level clades or higher). However, at least some of these groups are represented by
only a few members (e.g., Anguimorpha, Scincoidea), so these apomorphies may in fact
diagnose less inclusive clades (Table 4).

Heterochronic events

Inferred heterochronic events show more consistency between given methods than between
phylogenies (e.g., event-paired data for morphological phylogeny are more similar to
event-paired data for molecular topology than to continuous data for morphological tree).

Only a few of these events are common to all methods and phylogenies (Figs. 3—14).

DISCUSSION

Developmental cladistic characters failed to recover topology similar to those based on other
data (i.e., molecular or morphological). This was also found in similar studies (Maisano,
2002; Werneburg & Sdnchez-Villagra, 2009; Werneburg ¢ Sdnchez-Villagra, 2015). This
may be a consequence of uneven sampling of different squamate clades in the present
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Table 4 Event-paired developmental synapomorphies of higher-level squamate clades. Asterisk denotes synapomorphies present only in analysis
using ordered characters, while plus denotes synapomorphies present only in analysis employing unordered characters.

Clade

Synapomorphies

(a) Molecular phylogeny
Gekkota except Diplodactylidae
Unidentata

Scincoidea (Mabuya)

Gymnophthalmidae

Toxicofera
Serpentes
Thamnophis + Vipera

Varanus rosenbergi + V. panoptes
Iguania

Acrodonta

Chamaeleonidae

Agama + Calotes

Pleurodonta excluding Tropidurus

Liolaemus

(b) Morphological phylogeny
Iguania

Pleurodonta

Liolaemus

Acrodonta
Agama + Pogona

Chamaeleonidae

(1) pharyngeal slits closed simultaneous with three-segmented limb*

(1) secondary optic vesicle simultaneous with allantois bud, (2) hyomandibular slit
not earlier than allantois bud

(1) hyomandibular slit later than secondary optic vesicle, (2) allantois vesicle ear-
lier than torsion completion, (3) allantois contacts chorion simultaneous with tor-
sion completion, (4) allantois contacts chorion simultaneous with hyomandibu-
lar slit, (5) allantois contacts chorion earlier than choroid fissure open, (6) allantois
contacts chorion earlier than limb ridge*, (7) pharyngeal slits closed later than eye-
lid forms as a thin ribbon-like sheet of tissue overlapping the eyeball*

(1) jaw initiated simultaneous with maximum pharyngeal slits, (2) jaw initiated
earlier than hemipenal buds form on cloacal lips, (3) pharyngeal slits closed simul-
taneous with hemipenal buds form on cloacal lips*, (4) pharyngeal slits closed si-
multaneous with three-segmented limb*, (5) jaw completion simultaneous with
digits differentiated in the limb paddle

(1) secondary optic vesicle later than allantois bud, (2) allantois vesicle simultane-
ous with secondary optic vesicle*

(1) pharyngeal slits closed no later than hemipenal buds form on cloacal lips*, (2)
pharyngeal slits closed earlier than eyelid form as thin ribbon-like sheet of tissue*
(1) jaw initiated later than hemipenal buds form on cloacal lips*, (2) eyelid form as
thin ribbon-like sheet of tissue simultaneous with jaw initiated

(1) pharyngeal slits closed simultaneous with three-segmented limb

(1) limb ridge later than choroid fissure open*

(1) allantois vesicle simultaneous with torsion completion +

(1) allantois contacts chorion later than limb ridge*

(1) jaw initiated later than hemipenal buds form on cloacal lips*, (2) jaw initiated
later than three-segmented limb¥, (3) pharyngeal slits closed simultaneous with jaw
initiated*

(1) pharyngeal slits closed simultaneous with three-segmented limb*

(1) jaw initiated simultaneous with three-segmented limb+-, (2) pharyngeal slits
closed earlier than jaw initiated

(1) hyomandibular slit later than allantois bud*

(1) pharyngeal slits closed simultaneous with three-segmented limb*, (2) pharyn-
geal slits closed earlier than eyelid forms as thin ribbon-like sheet of tissue*

(1) allantois bud earlier than otic placode, (2) secondary optic vesicle earlier than
otic placode, (3) secondary optic vesicle simultaneous with allantois bud+, (4) hy-
omandibular slit simultaneous with torsion completion*, (5) hyomandibular slit
later than secondary optic vesicle*, (6) choroid fissure open simultaneous with otic
placode, (7) choroid fissure open earlier than allantois vesicle, (8) jaw initiated si-
multaneous with three-segmented limb+, (9) pharyngeal slits closed earlier than
three-segmented limb*, (10) pharyngeal slits closed earlier than jaw initiated

(1) allantois vesicle simultaneous with torsion completion+
(1) eyelid forms as thin ribbon-like sheet of tissue simultaneous with jaw initiated*

(1) allantois contacts chorion later than limb ridge*

(continued on next page)
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Table 4 (continued)
Clade

Synapomorphies

Scleroglossa

Gekkota except Diplodactylidae
Varanus rosenbergi + V. panoptes

Serpentes
Scincomorpha

Scincoidea (Mabuya)

Gymnophthalmidae

(1) torsion completion simultaneous with allantois bud*, (2) hyomandibular slit
simultaneous with torsion completion

(1) pharyngeal slits closed simultaneous with three-segmented limb*
(1) pharyngeal slits closed simultaneous with three-segmented limb

(1) pharyngeal slits closed earlier than eyelid forms as a thin ribbon-like sheet of
tissue*

(1) allantois bud simultaneous with otic placode+, (2) secondary optic vesicle si-
multaneous with otic placode

(1) torsion completion later than allantois bud*, (2) secondary optic vesicle ear-
lier than torsion completion®, (3) hyomandibular slit later than allantois bud*, (4)
hyomandibular slit later than secondary optic vesicle*, (5) allantois vesicle earlier
than torsion completion, (6) allantois vesicle earlier than hyomandibular slit, (7)
allantois contacts chorion simultaneous with torsion completion, (8) allantois con-
tacts chorion simultaneous with hyomandibular slit, (9) allantois contacts chorion
earlier than choroid fissure open, (10) allantois contacts chorion earlier than limb
ridge, (11) jaw initiated simultaneous with three-segmented limb+

(1) jaw initiated simultaneous with maximum pharyngeal slits, (2) jaw initiated
earlier than hemipenal buds form on cloacal lips, (3) jaw initiated earlier than
three-segmented limb*, (4) pharyngeal slits closed simultaneous with hemipenal
buds form on cloacal lips*, (5) pharyngeal slits closed simultaneous with three-
segmented limb*, (6) jaw completion simultaneous with digits differentiated in
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Figure 3 Heterochronic events in lepidosaur evolution. Mapped onto molecular phylogeny, using con-
tinuous data, in relation to the ancestral lepidosaur. Length of all branches equals 1. Numbers within
boxes refer to developmental events (Table 2). Down arrow denotes earlier development of a given struc-
ture, while up arrow represents later development.
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Figure 8 Heterochronic events in lepidosaur evolution. Mapped onto morphological phylogeny, using
continuous data, in relation to the ancestral squamate. Length of all branches equals 1. Numbers refer to
developmental events (Table 2). Down arrow denotes earlier development of a given structure, while up
arrow represents later development.

Sphenodon
Liolaemus gravenhorsti
Liolaemus tenuis
Tropidurus

Uta

lguana

Anolis

Chamaeleo
Furcifer

Calotes

Agama

Pogona

Amalosia
Strophurus
Eublepharis
Tarentola
Chondrodactylus
Gehyra
Calyptommatus
Nothobachia
Zootoca

Mabuya

Varanus indicus
Varanus panoptes
Varanus rosenbergi
Boaedon <20
Vipera
Thamnophis
Python <20

Figure 9 Heterochronic events in lepidosaur evolution. Mapped onto morphological, stratigraphically
calibrated phylogeny, using continuous data, in relation to the ancestral lepidosaur. Numbers refer to de-
velopmental events (Table 2). Down arrow denotes earlier development of a given structure, while up ar-
row represents later development.
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ordered event-paired characters. Numbers refer to developmental events (Table 2). Down arrow denotes

earlier development of a given structure, while up arrow represents later development.
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Figure 13 Heterochronic events in lepidosaur evolution. Mapped onto morphological phylogeny, us-
ing unordered event-paired characters. Numbers refer to developmental events (Table 2). Down arrow de-

notes earlier development of a given structure, while up arrow represents later development.
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Figure 14 Heterochronic events in lepidosaur evolution. Mapped onto morphological phylogeny, using
ordered event-paired characters. Numbers refer to developmental events (Table 2). Down arrow denotes
earlier development of a given structure, while up arrow represents later development.

analysis—out of 28 included species, 11 are iguanians and six are gekkotans, while there
are only three anguimorphs (and all of them belong to a single clade, Varanus) and one
scincoid. Members of other important clades, like Amphisbaenia and Dibamidae, were
not included. Some of these groups only recently were studied in terms of development
(e.g., Gregorovicova et al., 2012). Moreover, development of lepidosaurs included in this
analysis is incompletely known. Thorough study of developmental sequences of these
and other members of these diverse clades will be beneficial to future analyses. However,
it may be that homoplasies are very common in developmental sequences of squamates.
Moreover, the phylogenetic signal in organogenetic events (at least those used in this study)
may be weak or detectable only in deeper nodes of the phylogenetic tree (cf. Jeffery et al.,
2002b; Maisano, 2002). This may be indicated by higher congruence between methods in
reconstructing heterochronic events than between given phylogenies.

The only cladistic analyses that slightly resembled published phylogenies employed
event-paired characters, especially ordered ones (Fig. 1B). In this analysis, eight of eleven
included iguanian species formed a monophyletic group with Thamnophis and Mabuya
that was sister to all other squamates. This resembles the morphological topology, where
iguanians are sister group to all other squamates (e.g., Estes, de Queiroz & Gauthier, 1988;
Conrad, 2008; Gauthier et al., 2012). This may suggest that developmental sequences of
most iguanians and the tuatara are relatively similar. Under morphological topology,
these similarities would represent symplesiomorphies but under molecular one, would be
considered homoplasies. Reeder et al. (2015) suggested that support for basal placement
of Iguania comes from the cranial characters. This is not the case in the present analysis.
Character mapping and ancestral states reconstructions of event-paired data suggest that
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potential symplesiomorphies between the tuatara and iguanians (as a whole or one of
their major subgroups—Acrodonta and Pleurodonta) are connected with the relatively
later torsion completion, rather than of some events concerning head development. Other
groups recognized by morphological analyses also receive some support. For example,
Scleroglossa are supported by earlier occurrence of torsion completion (simultaneous
with occurrence of hyomandibular slit and allantois bud), unlike in tuatara and Iguania.
Scincomorpha are supported by simultaneous development of otic placode, allantois bud
and secondary optic vesicle.

Gekkotans differ from other squamates in later development of the allantois (Andrews,
Brandley & Greene, 2013) but in that trait they resemble the tuatara. Under molecular
topology, earlier development of the allantois bud supports the Unidentata (Table 4).
This may represent a genuine signal of monophyly of that group, however, caution is
warranted. Gekkotans display many paedomorphic features, including their morphology
(e.g., Daza, Bauer & Snively, 2014) and development (Jonasson, Russell & Vickaryous,
2012). Thus, the condition in gekkotans may represent reversal to the primitive condition
(presumably, as displayed by the tuatara) rather than plesiomorphy. This situation is similar
to the development of a single egg tooth, which purportedly supports the monophyly of
Unidentata (see discussion in Assis ¢ Rieppel, 2011). To gain more insight into that matter,
it would be crucial to sample development of dibamids, the only other non-unidentate
squamates.

In the fossil time-calibrated continuous analysis, only one event in two species is
inferred to show heterochrony in relation to the ancestral lepidosaur. This may seem
surprising, as some squamates show heterochrony to the ancestral squamate (much
closer phylogenetically). However, if all studied taxa are extant (as is the case in the
present analysis), the long branches would result in wider confidence intervals and thus
ancestral state reconstructions for deep nodes of the phylogenetic tree would be less certain
(Germain & Laurin, 2009). Integration of data from fossils would be useful in that regard
but it seems highly unlikely that information on organogenesis can be preserved in the
fossil record, despite recent significant advances in developmental palaeobiology (e.g.,
Skawiriski &Tatanda, 2015).

In the continuous analyses (both calibrated and uncalibrated and using either molecular
or morphological topology), values of all developmental events of the tuatara are located
within the confidence interval of the ancestral squamate. This suggests that present data are
equally consistent with either hypothesis of squamate phylogeny (cf. Germain ¢ Laurin,
2009).

In this study only two major phylogenetic hypotheses of squamates were used. It is
not beyond imagination that neither of these phylogenies is fully correct. For example, in
the analysis combining morphological and molecular data conducted by Lee (2005) the
“fossorial group” is polyphyletic, as suggested by molecular analyses (e.g., Wiens et al., 2012;
Pyron, Burbrink e Wiens, 2013), but division of squamates into Iguania and Scleroglossa
is retained, as in morphological analyses (e.g., Conrad, 2008; Gauthier et al., 2012). This
could, to some extent, explain the discrepancies in reconstructions of heterochronic events,
as none of these would be done on the basis of the correct tree.
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CONCLUSIONS

Cladistic analyses conducted using characters generated by event-pairing and continuous
analysis do not resemble any previously published phylogeny. Ancestral state
reconstructions are equally consistent with both morphological and molecular hypotheses
of squamate phylogeny. Results of the cladistic analyses, and the fact that reconstructions
of heterochronic events show more similarities between certain methods than phylogenetic
hypotheses, suggest that phylogenetic signal is at best weak in the studied developmental
events.
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