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ABSTRACT
Phytoplankton are the world’s largest oxygen producers found in oceans, seas and
large water bodies, which play crucial roles in the marine food chain. Unbalanced
biogeochemical features like salinity, pH, minerals, etc., can retard their growth. With
advancements in better hardware, the usage of Artificial Intelligence techniques is
rapidly increasing for creating an intelligent decision-making system. Therefore, we
attempt to overcome this gap by using supervised regressions on reanalysis data
targeting global phytoplankton levels in global waters. The presented experiment
proposes the applications of different supervised machine learning regression
techniques such as random forest, extra trees, bagging and histogram-based gradient
boosting regressor on reanalysis data obtained from the Copernicus Global Ocean
Biogeochemistry Hindcast dataset. Results obtained from the experiment have
predicted the phytoplankton levels with a coefficient of determination score (R2) of
up to 0.96. After further validation with larger datasets, the model can be deployed in
a production environment in an attempt to complement in-situmeasurement efforts.
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INTRODUCTION
Phytoplankton are microscopic, single-celled photosynthetic organisms that live in both
fresh and salty water environments. They have photosynthetic pigments which
significantly contribute to global oxygen production. The chlorophyll pigments found in
phytoplankton absorb the solar radiation and convert the solar energy into chemical
energy through the photosynthesis process. Chlorophyll pigments are often used as an
indicator of water quality as well as phytoplankton biomass (Rizzuto et al., 2020).
Therefore, phytoplankton plays an important role in maintaining the marine ecological
balance by becoming a major portion of the marine food chain. Phytoplankton need a
suitable environment for optimum growth. The imbalance in the concentration of
different biogeochemical features affects phytoplankton growth (Adhikary et al., 2021;
Chai et al., 2021). These features are currently available and can be obtained from remote
sensing sensors by processing the reflectance spectrum.

How to cite this article Adhikary S, Tiwari SP, Banerjee S, Dwivedi AD, Rahman SM. 2024. Global marine phytoplankton dynamics
analysis with machine learning and reanalyzed remote sensing. PeerJ 12:e17361 DOI 10.7717/peerj.17361

Submitted 19 September 2023
Accepted 18 April 2024
Published 8 May 2024

Corresponding author
Ashutosh Dhar Dwivedi,
addw@es.aau.dk

Academic editor
Diogo Provete

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj.17361

Copyright
2024 Adhikary et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.17361
mailto:addw@�es.aau.dk
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.17361
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


Several biological and chemical properties of the oceans like phytoplankton, primary
productivity, dissolved nitrites, iron, oil, and several other parameters could be observed
using remote sensing technologies (Sun et al., 2022; Adhikary, Tiwari & Banerjee, 2022).
Many of these properties can be detected through the light of specific wavelengths.
For example, 550–560 and 700–719 nm range can be studied to detect phytoplankton
(Kramer et al., 2022). Moreover, different ratios of remote sensing reflectance (RRS) can be
utilized to observe certain properties. For example, Chl-a can be best detected from R443/
R490 and R490/R555 configurations (Kolluru & Tiwari, 2022). Further, in-situ
observations can be used to fine-tune the results obtained from the experiments.

Active fluorescence methods have been extensively used around the world for
estimation of the primary production normalized to Chl-a and used regression algorithms
to analyze the yield slope (Seenipandi et al., 2021). Remote sensing technologies have been
used to study the sun-induced chlorophyll fluorescence and understand the natural
variations in the optical characteristics of phytoplankton discussed (Hu et al., 2021; Liu
et al., 2021a; Pahlevan et al., 2021; Xu et al., 2021). Figure 1 shows the distribution of global
phytoplankton concentration and the number marks of the study locations for the
experiment which have been discussed later in this study. Ocean colour remote sensing has
significantly advanced in the last four decades since the launch of the first ocean colour
sensor the Coastal Zone Color Scanner Experiment (CZCS) (McClain, Franz & Werdell,
2022). Advanced ocean colour sensors are currently available that can be used for
monitoring phytoplankton distribution remotely at a global scale. The phytoplankton
blooms cause a change in ocean colour that can be observed from the space (Zhong et al.,
2021). Iron distribution has a linear dependency on the phytoplankton biomass (Gomaa
et al., 2021; Thomalla et al., 2021). There also exists a nonlinear relationship between
dissolved cadmium and phosphate and the phytoplankton growth affecting the
phytoplankton size (Schine et al., 2021; Zilius et al., 2021). Further phytoplankton growth
is dependent upon the presence of salinity, nutrients, light, pH and turbulence (Sun et al.,
2021; Wang et al., 2021a)

The biogeochemical features obtained from the remote sensing sensors can be processed
with machine learning algorithms for smarter decision-making. Currently, there are
several machine learning regression algorithms available. Random forest is a well-known
supervised machine learning algorithm that learns by constructing several trees and
deciding the outcome based on votes cast by the majority of trees. It is well-known for
producing consistent results, and it has been widely used to detect algal blooms using
remote sensing data (Benmokhtar et al., 2021). Bagging regressor is an ensemble algorithm
that fits the base regressor to random subsets of the training dataset by substituting some
subsets with others. It has earlier been used for the classification of corals for
oceanographic surveys (Gómez et al., 2021). Extra trees regressor also known as extremely
randomized trees regressor is a type of supervised learning algorithm which works by
fitting on extremely randomized decision trees. It has earlier been used in several domains
such as to retrieve optically active parameters from oceanic reflectance spectra (Turkmen,
Chee & Huff, 2021). Finally, a Histogram-based gradient boosting regressor is a form of
ensembled decision tree and works extremely fast for large datasets (Guryanov, 2019).
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Reanalysis of remote sensing with calibration from in-situ observations to produce a
robust dataset is a very promising and growing technique for large-scale ocean monitoring
(Ma et al., 2021). NASA’s ocean colour processing group is working on developing a new
algorithm for satellite estimation. However, artificially intelligent algorithms such as
machine learning (ML) and deep learning (DL) have not been extensively investigated for
estimating phytoplankton concentration (Wang et al., 2021b; Grøtte et al., 2021). Because
AI-based approaches have been widely implemented in a variety of other domains, these
methods can also be used to monitor the colour of water bodies (Puissant et al., 2021; Liu
et al., 2021b). These models will be very useful for remotely monitoring the health of the
marine ecosystem and making smart decisions (Asim et al., 2021). This study aims to: i)
develop and test supervised learning models on six different locations around the world
using the Copernicus Global Ocean Biogeochemistry Hindcast and Physical GLOBAL
REANALYSIS datasets, and ii) remotely predict phytoplankton concentration based on
other biogeochemical features. We used four ML algorithms in this study: random forest
regressor, bagging regressor, extra trees regressor, and histogram-based gradient boosting
regressor (HGBR).

Research background
As per recent studies conducted by Groom et al. (2019) ocean colour data plays a vital role
in determining various types of oceanic phenomena such as harmful algal bloom, coastal
eutrophication, sediment plumes to observe and analyse global scale. Also by using various
specialised optical sensors like OLCI, MERIS, Aqua-MODIS, VIIRS, and Sea-WiFS the
observation assessments can be done by decade statistics focused on medium to large
resolution based ocean and coastal sea operations. The global climate observing system
(GCOS) acknowledges the ocean colour as an essential climate variable (ECV) specifically

Figure 1 Global marine phytoplankton distribution at a depth of 0.5 m, on 16th April 2018.
The bluish region indicates low phytoplankton concentration and the yellow region indicates higher
phytoplankton concentration. Six points have been marked which are the study locations considered for
the experiment. These six locations are Gulf of Mexico, Bay of Bengal, North Atlantic, North Pacific,
South Atlantic and Indian Ocean. Full-size DOI: 10.7717/peerj.17361/fig-1
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in the visible domain, along with chlorophyll-a, which is also identified as one of the
required products for ECV (Sathyendranath et al., 2019). Recent scientific assessments
show that the reflectance of the 443 nm band was present on most ocean colour sensors for
the peak in chlorophyll-a specific absorption while the chlorophyll-a specific absorption at
412 nm reaches about 70% of that at 443 nm (O’Reilly & Werdell, 2019).

Several machine learning and deep learning algorithms have been used in the literature
for analysing remote sensing data. Novel approaches with random forest-based regression
improve spatial and temporal coverage of chlorophyll detection using a combination of
high-quality, low-coverage, chlorophyll and lower-quality remote sensing data (Chen et al.,
2019). This helps in global chlorophyll-a mapping with up to 3.5 times better resolution.
Ongoing and past remote sensing missions with hyperspectral and multispectral optical
payloads like SeaWiFS, Aqua/MODIS, SNPP/VIIRS, ISS/HICO, Landsat8/OLI, DSCOVR/
EPIC, Sentinel-2/MSI, Sentinel-3/OLCI, COMS/GOCI etc., facilitates a better ocean colour
monitoring. The implementation of the Machine Learning algorithm on data obtained
from these sensors boosts the efficiency of the model 10 times compared to the literature
(Fan et al., 2021).

There exist several state-of-the-art technologies that have demonstrated the usage of
remote sensing along with machine learning to study ocean surfaces as well as ocean beds
(Zhou et al., 2023). For the surface studies, several works have attempted to detect several
oceanographic parameters like chlorophyll-a, salinity, temperature, water movement
dynamics, oil spills and many more (Abou Samra, El-Gammal & Eissa, 2021; Kim et al.,
2023; Prakash Tiwari, Adhikary & Banerjee, 2022). Studies have also been performed to
determine the correlation between oceanic phytoplankton and other oceanographic
properties (Li et al., 2023; Adhikary et al., 2021). Remote sensing has also been used to
study the seasonal variability of phytoplankton for about 50 years time scale but limited to
only specific parts of the world (Barton, Lozier & Williams, 2015). Further, studies have
also been performed to provide more advanced phytoplankton monitoring methods which
can be built with ground-based remote sensing. However, this study is conducted on only
two different lakes in China and that too for detecting blooms in real time and no means
for future forecasting. The study (Zhu et al., 2019) shows that hyperspectral imagery with
the help of transfer learning can be used for the detection or segmentation of
phytoplankton but this study too couldn’t analyse the dynamics of phytoplankton. Recent
advancements in remote sensing combined with in-situ observations, and a reanalysis of
data have been produced by the Marine Copernicus program to indicate the presence of
various oceanographic parameters in different parts of the world for over 18 years
(Irazoqui Apecechea, Melet & Armaroli, 2023). However, in the literature, there exist no
studies to use such historically reanalyzed remote sensing data for a smart and in-depth
study of global phytoplankton. This motivated us to conduct this experiment.

MATERIALS AND METHODS
The entire experiment was conducted on a personal computer with 16 GB Random Access
Memory (RAM), 4 GB NVIDIA GTX 1650ti Graphical Processing unit (GPU), 4 Core
hyperthreaded intel i5 CPU and 1TB Non-Volatile Memory Express (NVMe) M.2 Solid
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State Drive (SSD) was used. Linux operating system of kernel 5.11 was used for the
experiment and all the operations were performed using Python 3.7 using various libraries
like scikit-learn, matplotlib, numpy, pandas, seaborn and xarray.

Data collection
For our experiment (the learning algorithms), the open-sourced dataset by the Marine
Copernicus Program named Global Ocean Biogeochemistry Hindcast GLOBAL
REANALYSIS BIO 001 029 monthly (Perruche, 2018), which contained biochemical
records, and Global Reanalysis Phy 001 030 monthly, which contained physical records in
NetCDF format. The resolution of the dataset was 4 km per pixel. This dataset contains the
monthly-recorded data starting from 16th Jan 2000 till 16th Dec 2018. Altogether we have
206316 data points for the experiment. 80% of this data was used to train the model and
the remaining 20% was used to validate the performances (Prakash Tiwari, Adhikary &
Banerjee, 2022).

Among all these many features, surface CO2, dissolved oxygen, nitrate, phosphate,
dissolved silicate, pH, dissolved iron, ocean mixed layer thickness, surface temperature, sea
floor temperature, northward velocity, eastward velocity, salinity and sea surface height
were considered while building the model. On the other hand, the phytoplankton
concentration was used as a target variable to train the model.

Study area
To conduct this experiment, coordinate slices for multiple locations around the global
oceans, were manually examined for time-dependent variations in phytoplankton
concentrations. Based on substantial variation in multiple physical and chemical factors
over time, six different locations (i.e., Gulf of Mexico, Bay of Bengal, North Atlantic, North
Pacific, South Atlantic and the Indian Ocean). Figure 1 depicts the portion of the Gulf of
Mexico, the Bay of Bengal, the North Atlantic, the North Pacific, the South Atlantic and
the Indian Ocean. However, depth remains constant in this study, i.e., up to 0.5 m deep
from the sea level. Based on this, a time-series data was created, as explained in the
subsequent section. The descriptive statistics of the dataset are summarized in the
table provided as Supplemental Files.

Significance of each variable

Each one of the features used in the experiment has significant importance in the life cycle
of oceanic phytoplankton. Surface CO2 is an essential indicator as phytoplankton absorbs
CO2 depleting the concentration of the surface CO2 (Takao et al., 2020). Dissolved oxygen
is another essential parameter as phytoplankton are responsible for the world’s 50%
oxygen production (Cai et al., 2022). Nitrates and phosphates are important to forecast
phytoplankton dynamics because growing phytoplankton requires them as nutrients and a
continuous depletion in their concentration can indicate phytoplankton blooms
(Nindarwi, Samara & Santanumurti, 2021). Diatoms, which is a type of phytoplankton
form their frustules with the help of dissolved silicates and therefore this is another
important parameter which is directly related to phytoplankton growth (Xu et al., 2022).
Now, pH is a very important factor as phytoplankton best grows at pH levels of 7.5 to 8
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(Jia et al., 2020). Dissolved iron is used by the phytoplankton as a micronutrient and
increases its environmental stress tolerance (Yuan et al., 2021). Further, density ocean
mixed layer thickness is an important parameter as with increasing thickness, light
availability decreases which reduces phytoplankton metabolism (Diaz et al., 2021). A
temperature of 18 deg−14 deg C is ideal for phytoplankton growth (Fernández-González &
Marañón, 2021). Sea floor potential temperature is necessary for this study as a high
difference between surface and sea floor potential temperature can indicate a survival
difficulty for phytoplankton (Chen et al., 2021; Zohary, Flaim & Sommer, 2021).
Northward or eastward velocity is important for the study because it helps in the dispersal
of the phytoplankton, however, turbulent water streams can cause damage to the
phytoplankton ecosystem (Fai et al., 2023). Sea surface height indicates the difference in
distance between the mean sea surface and the reference ellipsoid (Chen et al., 2021). This
parameter has been included in the study because it indicates the volume of the water from
which the phytoplankton are measured.

Data conversion to time series and preprocessing
The datasets obtained in the experiment are in a form analogous to an image where each
pixel carries information about the magnitude of all biogeochemical features for the past
18 years for each consecutive day. Each pixel is associated with a coordinate. Information
from each pixel was then extracted and converted to a time series set. Following that, we
combined all of the pixelated time-series sets into a single time-series dataset. Following
this step, we normalized the entire dataset to fit in the range of 0 and 1 by using the
min-max scaler method.

Following this, data splits were performed in two stages. The first stage was where global
data was combined, first 80% data from the total 18-year timescale was used to train the
model and the remaining 20% was used to test the model. Later, the study was extended to
train on all water bodies leaving one and then tests were performed on that remaining one.
This was then repeated for all other water bodies. Subsequently, the predictions were then
compared against both seen and unseen datasets to understand the fitness and eliminate
any overfitting or underfitting issues.

The experiment was carried out on the Copernicus Hindcast dataset using different
machine-learning algorithms, which are elaborated in the subsequent paragraphs. Figure 2
shows the prediction analysis work diagram for the proposed work.

Regressors
To demonstrate and compare the applicability of different types of regressors, we
conducted a test on four different tree-based algorithms as these are very versatile. These
are Histogram-based Gradient Boosting Regressor (HGBR), Random Forest, Bagging and
Extra Trees. The reason for these tree-based methods working best for this experiment is
that the pre-processed data has many parameters which are dependent upon each other
and for these situations, tree-based models work the best (Park et al., 2019). The random
forest model built for this experiment contains 100 estimators which work based on mean
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squared error and minimal cost-complexity pruning parameter to be 0 (Stock &
Subramaniam, 2020). The bagging regressor model was trained using 10 estimators
(Xu et al., 2023). The extra tree was built to have an early stopping criterion for splitting a
tree based on the threshold value of 2. The tree requires at least one sample to form a leaf
node(Wei et al., 2019). The histogram-based gradient boosting model built for the
experiment is tuned by least-square losses with a learning rate of 0.1 and has a maximum
of 100 iterations. There is a maximum of 31 leaf nodes. There is a minimum of 20 samples
per leaf node. 10% among the training data have been used for measuring the early
stopping criteria. A maximum of 1e-7 absolute tolerance was used for comparing scores
during early stopping. The early stopping was performed if the validation performance did
not improve during the last 10 iterations (Su et al., 2021).

Figure 2 The flowchart depicting the complete procedure for estimating phytoplankton
concentrations in the present study. There, the reanalyzed remote sensing data was obtained for six
different locations around the world using the Copernicus program, later the data were converted into a
time series, and following this the data splits were performed according to two different strategies i) 80%
global data to train and rest 20% global data to test, ii) training set consisting all water bodies leaving one
and later testing on that one which was left, and then finally machine learning was used to train the
model. Later performances of the model have been validated.

Full-size DOI: 10.7717/peerj.17361/fig-2
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RESULTS
Phytoplankton concentration at studied locations for different months revealed a typical
surge in the northern hemisphere during March and April; on the other hand,
phytoplankton concentration surged in the southern hemisphere during October and
November. There is a significant natural decline in phytoplankton concentration about
75% by mass in the opposite hemisphere during peak months for another hemisphere.
This phytoplankton life cycle has a number of consequences for the ecosystem, as excessive
concentration could affect the ocean colour and too low concentration could possibly
affect the food chain of various aquatic systems. When phytoplankton concentration
declines, a similar decline in primary productivity occurs, as there is a large volume of
phytoplankton available to contribute a significant amount of photosynthesis. When
phytoplankton volume reaches its peak, the primary productivity also peaks and
concentrations are dropped significantly. Figure 3 shows a low concentration of
phytoplankton and Fig. 4 shows a higher concentration of phytoplankton. After observing
the dataset, a strong relationship between the biogeochemical and physical features with
the phytoplankton volumes can be deduced, implying that the natural phytoplankton life
cycle occurs. These characteristics were used to estimate phytoplankton volumes in this
experiment, and their performances are discussed in the following section.

Phytoplankton estimation performances
The model has successfully estimated global phytoplankton concentration with a
maximum of 0.963142 R2 score and the performance summary is summarized in Table 1.
From the experiment, when the model has been tested with the same data it was trained
upon, it could be noted that the Extra Trees algorithm seems to be a perfect regressor
having estimated with almost no error. However, this is not the case because the way this
algorithm works is to first learn the data, i.e., it predicts the same results when the same
inputs are encountered but when there is a different input, it uses the average of closest
values to predict the outcomes. So generally, the output of the Extra Trees could not be
considered as overfitting as the prediction results on unseen data are good as well. To
better understand the fitness, in the first test case, let us see the performances on the seen
data. It can be observed that extra trees (3.02e-24) have the lowest mean squared error
rates followed by random forest (0.000508), bagging (0.000771) and HGBR (0.005344).
Extra trees have the best R2 score of 1.0 followed by random forest being 0.994511, Bagging
0.991668 and HGBR being 0.942291 the lowest. The same pattern can be noticed for all
other metrics as well. However, training the model, took the longest (331.683 s) with
random forest as it requires building a large number of trees to train the model. Extra trees
took 103.444 s, Bagging regressor took 33.538 and finally, HGBR was the fastest to train the
model at 2.196 s. Following this, for the second test case, the testing was performed on
unseen data. In this case, results however had a slightly lower performance but not to the
point it could be considered overfitting. This time, the R2 score was highest for extra trees
(0.963142) as well followed by random forest (0.961293), bagging (0.956989) and HGBR
(0.936631) being the lowest of all. From these two scenarios, it can be observed that the
performances on the unseen data are slightly lower than the performances on the seen
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Figure 3 A portion of the study location having low phytoplankton volumes. Each pixelated block
represents the aggregated value of phytoplankton concentration. The concentration of the phytoplankton
in a particular pixel/region is indicated by the colour corresponding to the provided colour bar.

Full-size DOI: 10.7717/peerj.17361/fig-3

Figure 4 A portion of the study location having high phytoplankton volumes. Each pixelated block
represents the aggregated value of phytoplankton concentration. The concentration of the phytoplankton
in a particular pixel/region is indicated by the colour corresponding to the provided colour bar.

Full-size DOI: 10.7717/peerj.17361/fig-4
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data, although both display promising results. This confirms that there exists no case of
overfitting.

The sequence is the same as a prediction on training data. The time it took to produce
results is the fastest for HGBR (0.089830 s) followed by bagging (0.232537 s), random
forest (2.21391 s) and extra tree (2.426239 s) the slowest. Therefore although the overall
accuracy of Extra Trees is higher than the remaining algorithms, the training and testing
time is very slow indicating a higher amount of resource consumption hence in general,
Bagging could be the best suitable model both in terms of accuracy and speed. This time
difference is considerably high considering deployment scenarios where the model is used
as a server handling thousands of concurrent requests and in this case, a low latency
response is necessary. The estimations predicted by the models and the original have been
plotted with heatmaps corresponding to the concentration of the points have been shown
in Fig. 5. Figure 5A shows the performance for prediction with global data. It can be
observed that the prediction for this was the most accurate compared to all other locations
this is because this location had data from all parts of the world. Likewise, Fig. 2 represents
the prediction for the North Pacific Ocean when trained with water from the remaining
parts of the world. After the globally trained model, this model had the lowest prediction
deviation for all the algorithms. This clearly signifies that the water properties of this
location have the highest similarity with the remaining part of the world in terms of the

Table 1 Regression performance for phytoplankton estimation in global waters.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000508 0.000771 3.02E−24 0.005344

Median absolute error 0.009533 0.010231 8.88E−16 0.038781

R2 score 0.994511 0.991668 1.0 0.942291

Explained variance 0.994512 0.991668 1.0 0.942291

Max error 0.753581 0.885730 4.99E−10 1.574378

Mean squared log error 8.34E−05 0.000126 3.37E−25 0.000948

Mean poisson deviance 0.000349 0.000531 2.67E−18 0.003931

Mean gamma deviance 0.000268 0.000406 −4.54E−17 0.003138

Mean tweedie deviance 0.000508 0.000771 3.02e-24 0.005344

Train time (s) 331.683 33.538 103.444 2.196

Test Mean squared error 0.003565 0.003962 0.003395 0.005837

Median absolute error 0.026137 0.027924 0.025500 0.039536

R2 score 0.961293 0.956989 0.963142 0.936631

Explained variance 0.961294 0.956990 0.963142 0.936631

Max error 1.396569 1.263875 1.077332 1.491765

Mean squared log error 0.000596 0.000673 0.000570 0.001011

Mean poisson deviance 0.002495 0.002811 0.002383 0.004215

Mean gamma deviance 0.001919 0.002175 0.001835 0.003323

Mean tweedie deviance 0.003565 0.003962 0.003395 0.005837

Test time (s) 2.211391 0.232537 2.426239 0.089830
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Figure 5 Comparisons of original phytoplankton concentration vs. all the modelled phytoplankton
concentration obtained from random forest, bagging, extra trees, and HGBR, for all locations
combined and one vs. rest locations. The points along the x-axis show the original concentration of
phytoplankton and the y-axis shows the predicted concentration of phytoplankton. The solid black and
red lines represent the one-to-one line and regression line, respectively. A smaller angle between the lines
with a small distance between the lines (when parallel) represents a better fit. The colour bar shows the
concentration of the points in the range. The sub-graphs shown represents modeling performances based
on data obtained from: (A) World-wide (B) Gulf of Mexico (C) Bay of Bengal (D) North Atlantic (E)
North Pacific (F) South Atlantic (G) Indian Ocean. Full-size DOI: 10.7717/peerj.17361/fig-5
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earlier-mentioned physiochemical features. Similarly, the amount of performance
deviation from all the locations can be used to identify the amount of variations in the
physiochemical properties of these study areas.

Addressing underfitting and global variations of biogeochemical
features
The waters worldwide have a different composition of biogeochemical features and they
have a different impact on the lifecycle of phytoplankton with different evolutionary traits.
Therefore it is important to understand the effects of these variations in automated
estimations of phytoplankton. Different areas could have different composition patterns
and when this pattern is not known to the model, it could generate degraded results.
Therefore the experiment has been extended to estimate phytoplankton volumes of
locations that are not present in training data and test the model in order to understand
which areas have high variations and need more attention while developing the best fit for
the model.

From the aforementioned tables, the North Pacific Ocean (Table 2), North Atlantic
Ocean (Table 3) and South Atlantic Ocean (Table 4) all have reasonable R2 scores around
0.8, indicating that these three locations have high similarity with the remaining oceans in
the world (Table 1). R2 score for the Indian Ocean (Table 5) is not as high as the others, but
still within an acceptable R2 score range of roughly 0.65–0.7, showing a somewhat different
biogeochemical feature pattern and its relationship with phytoplankton. The Gulf of
Mexico (Table 6) and the Bay of Bengal (Table 7) have quite low R2 scores in the range of
0.4 to 0.5, indicating higher variations of biogeochemical properties and corresponding
phytoplanktons. With high variations associated with specific locations, estimating
phytoplankton in certain locations is difficult, resulting in an underfitting problem.
Therefore to improve the estimation for these regions, some data from these locations

Figure 5 (continued) Full-size DOI: 10.7717/peerj.17361/fig-5
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Table 2 Regression performance for North Pacific vs rest of the world.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000550 0.000844 1.39E−30 0.005588

Median absolute error 0.009817 0.010455 8.88E−16 0.039067

R2 score 0.993147 0.989483 1.0 0.930399

Explained variance 0.993147 0.989483 1.0 0.930399

Max error 0.780050 1.583320 1.24E−14 1.613996

Mean squared log error 8.78e-05 0.000134 2.41E−31 0.000973

Mean poisson deviance 0.000369 0.000566 2.10E−18 0.004041

Mean gamma deviance 0.000276 0.000420 −4.64E−17 0.003144

Mean tweedie deviance 0.000550 0.000844 1.39E−30 0.005588

Train time (s) 332.995 33.121 93.910 4.218

Test Mean squared error 0.025677 0.026768 0.026934 0.026008

Median absolute error 0.113882 0.116661 0.124013 0.120700

R2 score 0.819864 0.812213 0.811046 0.817542

Explained variance 0.874255 0.870377 0.828022 0.865166

Max error 0.645404 0.752089 0.654208 0.545281

Mean squared log error 0.004973 0.005199 0.005137 0.005100

Mean poisson deviance 0.020916 0.021870 0.021323 0.021372

Mean gamma deviance 0.018336 0.019243 0.018447 0.018981

Mean tweedie deviance 0.025677 0.026768 0.026934 0.026008

Test time (s) 0.544131 0.069268 0.521268 0.074275

Table 3 Regression performance for North Atlantic vs rest of the world.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000540 0.000797 1.47E−30 0.005366

Median absolute error 0.009622 0.010237 8.88E−16 0.038228

R2 score 0.994164 0.991390 1.0 0.942082

Explained variance 0.994164 0.991390 1.0 0.942082

Max error 0.843920 0.879325 1.24E−14 1.913743

Mean squared log error 8.66e-05 0.000129 2.48E−31 0.000927

Mean poisson deviance 0.000364 0.000542 2.39E−18 0.003860

Mean gamma deviance 0.000273 0.000409 −4.55E−17 0.003028

Mean tweedie deviance 0.000540 0.000797 1.47E−30 0.005366

Train time (s) 339.787 33.872 89.379 3.595

Test Mean squared error 0.015781 0.016177 0.015921 0.013633

Median absolute error 0.081522 0.083380 0.080002 0.067542

R2 score 0.793842 0.788661 0.792010 0.821896

Explained variance 0.802206 0.796368 0.812456 0.833406

Max error 1.103184 0.725113 1.575166 1.176767

Mean squared log error 0.003187 0.003281 0.003122 0.002609

(Continued)
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should be incorporated while training the model to facilitate the model to learn properties
associated with these regions. This enhances the overall efficiency of phytoplankton
estimation in global waters.

Regression for seasonal variability
Later, the investigation has been extended to forecast the seasonal variability of
phytoplankton. Data of various seasons for this purpose have been collected as an arbitrary
day from the 2nd week of April, July, October and January as spring, summer, fall and
winter respectively for the northern hemisphere and fall, winter, spring and summer
respectively for the southern hemisphere. After performing the regression of the data
obtained from all over the world, the performance summary has been recorded in Table 8.

Table 3 (continued)

Metric Random forest Bagging Extra trees HGBR

Mean poisson deviance 0.013135 0.013503 0.012982 0.010815

Mean gamma deviance 0.011459 0.011816 0.011066 0.008956

Mean tweedie deviance 0.015781 0.016177 0.015921 0.013633

Test time (s) 0.809874 0.094937 0.894909 0.089111

Table 4 Regression performance for South Atlantic vs rest of the world.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000550 0.000844 1.39E−30 0.005588

Median absolute error 0.009817 0.010455 8.88E−16 0.039067

R2 Score 0.993147 0.989483 1.0 0.930399

Explained variance 0.993147 0.989483 1.0 0.930399

Max error 0.780050 1.583320 1.24E−14 1.613996

Mean squared log error 8.78e-05 0.000134 2.41E−31 0.000973

Mean poisson deviance 0.000369 0.000566 2.10E−18 0.004041

Mean gamma deviance 0.000276 0.000420 −4.64E−17 0.003144

Mean tweedie deviance 0.000550 0.000844 1.39E−30 0.005588

Train time (s) 332.995 33.121 93.910 4.218

Test Mean squared error 0.025677 0.026768 0.026934 0.026008

Median absolute error 0.113882 0.116661 0.124013 0.120700

R2 score 0.819864 0.812213 0.811046 0.817542

Explained variance 0.874255 0.870377 0.828022 0.865166

Max error 0.645404 0.752089 0.654208 0.545281

Mean squared log error 0.004973 0.005199 0.005137 0.005100

Mean poisson deviance 0.020916 0.021870 0.021323 0.021372

Mean gamma deviance 0.018336 0.019243 0.018447 0.018981

Mean tweedie deviance 0.025677 0.026768 0.026934 0.026008

Test time (s) 0.544131 0.069268 0.521268 0.074275
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Table 5 Regression performance for Indian Ocean vs rest of the world.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000483 0.000719 1.49E−30 0.004953

Median absolute error 0.008625 0.009333 8.88E−16 0.036254

R2 score 0.995086 0.992686 1.0 0.949648

Explained variance 0.995086 0.992686 1.0 0.949648

Max error 1.000382 0.940252 1.24E−14 1.585642

Mean squared log error 7.31e-05 0.000110 2.48E−31 0.000841

Mean poisson deviance 0.000310 0.000468 2.28E−18 0.003511

Mean gamma deviance 0.000226 0.000342 −4.65E−17 0.002728

Mean tweedie deviance 0.000483 0.000719 1.49E−30 0.004953

Train time (s) 333.271 33.197 94.616 2.690

Test Mean squared error 0.013952 0.014648 0.010607 0.011180

Median absolute error 0.068951 0.074891 0.067989 0.072918

R2 score 0.651281 0.633906 0.734892 0.720565

Explained variance 0.651734 0.633955 0.736032 0.721982

Max error 0.564515 0.614417 0.536458 0.466304

Mean squared log error 0.003003 0.003157 0.002225 0.002411

Mean poisson deviance 0.012201 0.012809 0.009058 0.009761

Mean gamma deviance 0.010946 0.011487 0.007882 0.008729

Mean tweedie deviance 0.013952 0.014648 0.010607 0.011180

Test time (s) 0.771438 0.093410 0.926036 0.105368

Table 6 Regression performance for Gulf of Mexico vs rest of the world.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000382 0.000580 1.36E−30 0.004523

Median absolute error 0.008875 0.009519 8.88E−16 0.036596

R2 score 0.995809 0.993642 1.0 0.950445

Explained variance 0.995809 0.993642 1.0 0.950445

Max error 0.612501 0.662656 1.24E−14 1.729356

Mean squared log error 6.89e-05 0.000104 2.35E−31 0.000845

Mean poisson deviance 0.000285 0.000433 2.79E−18 0.003482

Mean gamma deviance 0.000230 0.000349 −4.54E−17 0.002877

Mean tweedie deviance 0.000382 0.000580 1.36E−30 0.004523

Train time (s) 400.385 38.076 102.926 3.532

Test Mean squared error 0.053334 0.055418 0.041754 0.040747

Median absolute error 0.138261 0.141163 0.107952 0.108073

R2 score 0.479236 0.458879 0.592300 0.602135

Explained variance 0.549716 0.535834 0.626026 0.630668

Max error 2.730470 2.643686 2.994876 2.540424

(Continued)
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Here it can be clearly observed that the maximum R2 score for regression was found from
bagging regressor for winter data which is 0.989. Bagging regressor also estimated
phytoplankton accurately during summer with R2 score of 0.987. This high accuracy for
summer and winter is because of the fact that during this time, the growth of depletion of
phytoplankton comes to a stable rate. Highest difficulty was found during the fall as the R2

score for all the regressors was found to be between 0.922 to 0.966. The reason for lower
accuracy during fall was because of higher water frequency and intensity of storms and also
with lowering temperature. However, phytoplankton can still bloom due to stratification
and deepening of mixed layer which elevates nutrients from the ocean depths reaches the

Table 6 (continued)

Metric Random forest Bagging Extra trees HGBR

Mean squared log error 0.007989 0.008365 0.005791 0.005754

Mean poisson deviance 0.034055 0.035548 0.025349 0.025048

Mean gamma deviance 0.023269 0.024310 0.016734 0.016660

Mean tweedie deviance 0.053334 0.055418 0.041754 0.040747

Test time (s) 0.383338 0.044700 0.428533 0.043013

Table 7 Regression performance for Bay of Bengal vs rest of the world.

Metric Random forest Bagging Extra trees HGBR

Train Mean squared error 0.000398 0.000619 1.36E−30 0.004441

Median absolute error 0.008311 0.008948 8.88E−16 0.035103

R2 score 0.996153 0.994025 1.0 0.957152

Explained variance 0.996153 0.994025 1.0 0.957152

Max error 0.820872 0.870304 1.06E−14 1.635578

Mean squared log error 6.70e-05 0.000103 2.31E−31 0.000821

Mean poisson deviance 0.000280 0.000431 3.46E−18 0.003390

Mean gamma deviance 0.000223 0.000339 −4.46E−17 0.002814

Mean tweedie deviance 0.000398 0.000619 1.36E−30 0.004441

Train time (s) 335.91 32.82 86.35 2.23

Test Mean squared error 0.023537 0.025910 0.020538 0.025942

Median absolute error 0.080000 0.081830 0.078491 0.079452

R2 score 0.398746 0.338133 0.475358 0.337315

Explained variance 0.413666 0.352789 0.493099 0.347794

Max error 4.256334 4.202001 4.055531 4.000856

Mean squared log error 0.003358 0.003611 0.002976 0.003687

Mean poisson deviance 0.014542 0.015622 0.012900 0.015831

Mean gamma deviance 0.009806 0.010383 0.008821 0.010386

Mean tweedie deviance 0.023537 0.025910 0.020538 0.025942

Test time (s) 0.757761 0.093414 0.815170 0.147152
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Table 8 Global phytoplankton dynamics regression for seasonal variability.

Season Metric Random forest Bagging Extra trees HGBR

Spring Mean squared error 0.003658 0.004063 0.003344 0.005819

Median absolute error 0.024961 0.027586 0.025951 0.040845

R2 score 0.965811 0.937275 0.944842 0.967446

Explained variance 0.954757 0.977374 0.997334 0.963606

Max error 1.335260 1.220019 1.065912 1.555613

Mean squared log error 0.000568 0.000641 0.000594 0.000968

Mean poisson deviance 0.002455 0.002882 0.002403 0.004143

Mean gamma deviance 0.002001 0.002121 0.001812 0.003476

Mean tweedie deviance 0.003598 0.004012 0.003380 0.005932

Test time (s) 2.220237 0.226235 2.394213 0.091788

Summer Mean squared error 0.003549 0.003935 0.003295 0.005683

Median absolute error 0.025669 0.028513 0.024404 0.038631

R2 score 0.972348 0.987134 0.952258 0.967446

Explained variance 0.972349 0.923304 0.995985 0.897012

Max error 1.406904 1.310006 1.083257 1.490870

Mean squared log error 0.000621 0.000683 0.000576 0.001052

Mean poisson deviance 0.002435 0.002904 0.002372 0.004295

Mean gamma deviance 0.001877 0.002170 0.001864 0.003440

Mean tweedie deviance 0.003705 0.003884 0.003475 0.005806

Test time (s) 2.214708 0.243513 2.443223 0.094106

Fall Mean squared error 0.003669 0.003798 0.003255 0.006076

Median absolute error 0.026417 0.028494 0.024521 0.040920

R2 score 0.922553 0.920049 0.942916 0.966510

Explained variance 0.996189 0.951152 0.969980 0.932229

Max error 1.413607 1.297494 1.036932 1.425083

Mean squared log error 0.000614 0.000667 0.000593 0.001024

Mean poisson deviance 0.002542 0.002884 0.002426 0.004109

Mean gamma deviance 0.001927 0.002259 0.001792 0.003172

Mean tweedie deviance 0.003693 0.003949 0.003353 0.005545

Test time (s) 2.213381 0.227328 2.321668 0.089210

Winter Mean squared error 0.003703 0.003928 0.003357 0.005849

Median absolute error 0.024898 0.027801 0.024233 0.039512

R2 score 0.968695 0.988857 0.924038 0.903568

Explained variance 0.917459 0.963976 0.972388 0.897105

Max error 1.384838 1.290290 1.059556 1.431349

Mean squared log error 0.000573 0.000706 0.000598 0.001000

Mean poisson deviance 0.002547 0.002776 0.002292 0.004150

Mean gamma deviance 0.001843 0.002102 0.001786 0.003347

Mean tweedie deviance 0.003444 0.003952 0.003318 0.005605

Test time (s) 2.249427 0.234769 2.513584 0.090091
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surface which can result in sudden blooms of phytoplankton. This behaviour is difficult to
estimate which in turn causes a reduced accuracy for the estimation.

DISCUSSION
The study surpasses the prior works in multiple aspects. To our knowledge, this is the first
work to monitor the dynamics of marine phytoplankton which has studied more regions
compared to any prior works (Barton, Lozier & Williams, 2015). Earlier works have been
conducted to establish the dependency of physiochemical features with phytoplankton, but
the proposed work is the first one to perform time series analysis of this property at a global
scale (Adhikary et al., 2021). Further, prior works have been conducted for estimation of
many physiochemical features but the proposed work is the only one which performed a
time series analysis of these properties based on 18 years of data (Prakash Tiwari, Adhikary
& Banerjee, 2022).

Figures 6 and 7 show the distribution of the biogeochemical features of waters from all
study locations. Observing these plots, it can be noticed that the North Pacific Ocean has a
wide spectrum of chlorophyll distribution but other regions have spiked toward 0–0.2
scale. North Pacific Ocean and South Atlantic Ocean have considerably large distributions
of dissolved nitrates quantities but both Gulf of Mexico and Bay of Bengal have spikes
toward the lower end of the spectrum and this could be a good indicator for the difference
in regression performance in these regions. A similar pattern is also visible for dissolved
phosphates. The pH of the Bay of Bengal has spiked toward a similar region whereas other
areas have a tapered distribution and this could be an indicator of poor regression
performance at the waters of the Bay of Bengal.

There are several biases and points which can cause errors in the result in the long run
and which need to be fixed in subsequent experiments. One important point is that each
pixel or data unit used for the experiment corresponds to 2 KM resolution averaging the

Figure 6 The distribution of the biogeochemical features for all study locations combined, and
standardized with a mean 0 and unit standard deviation. Full-size DOI: 10.7717/peerj.17361/fig-6
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Figure 7 The distribution of the biogeochemical features for all study locations separately, and
standardized with a mean 0 and unit standard deviation. Full-size DOI: 10.7717/peerj.17361/fig-7
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data of the entire 2 KM for one point. This covers a significantly large area and therefore
minor variations within these regions are not recorded which can cause inconsistency
while measuring data from a finer spot.

CONCLUSION AND FUTURE WORKS
Phytoplankton concentrations in the Gulf of Mexico, Bay of Bengal, North Atlantic, North
Pacific, South Atlantic, and Indian Ocean were predicted and forecasted using the
biochemical and physical properties of these marine waters.

The extra trees regressor was found to perform best in this study, with an R2 score of
0.963142, but the training and prediction times were long, at 103.444 and 2.426239 s,
respectively. Following this, the bagging regressor has an R2 score of 0.956989 and trains
and predicts in 33.538 and 0.232537 s, respectively. Later, the trained model was tested on
waters from six different parts of the world to investigate the variation in biogeochemical
feature distribution worldwide. This has revealed that, while most parts of the world have a
similar distribution of biogeochemical features, only a few regions vary significantly.
Underfitting was avoided by incorporating data from waters with diverse biogeochemical
distributions. Finally, regression has been tested to predict seasonal variability of global
phytoplankton dynamics which has revealed that it is easiest to predict phytoplankton
dynamics during summer and winter with R2 scores of up to 0.987 and 0.988 respectively
while it is difficult to predict the dynamics during spring and fall which have achieved a
maximum R2 score of 0.967 and 0.966 respectively.

Adding more independent features and locations with longer timeframes to the training
set could further enhance the accuracy and reliability of the models. The machine learning
models used in this study could be further enhanced by optimizing the hyper-parameters
using different kinds of metaheuristics such as genetic algorithm, particle swarm
optimization, gravitational search algorithm, and pathfinder algorithm.
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