鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进 | 检测头篇 | 利用AFPN增加小目标检测层(让小目标无所遁形,全新改进策略)
1. 简介
ASF-YOLO颈部模块是一种先进的特征融合方法,专门设计用于增强目标检测和图像分割任务中对小目标的检测。它是ASF-YOLO(自适应尺度特征融合 for YOLO)框架的关键组成部分,该框架引入了几种新颖策略来提高小目标的检测性能。
2. 原理
ASF-YOLO颈部模块基于三个主要原理:
-
自适应通道调整: 它动态调整特征图中的通道数,以确保跨不同尺度的一致表示。
-
空间特征对齐: 它使用上采样或下采样操作对齐来自不同尺度的特征图的空间尺寸,以促进有效的特征融合。
-
基于注意力的或元素级的特征融合: 它采用基于注意力的或元素级的融合机制来组合来自不同尺度的特征图,自适应地分配权重或简单地将它们相加。
3. 应用场景
ASF-YOLO颈部模块特别适用于小目标在其中发挥关键作用的应用,例如:
-
交通标志检测: 在复杂的交通场景中识别