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Abstract 

 

This paper presents a novel methodology to perform adaptive Water Demand Forecasting (WDF) for 

up to 24 hours ahead with the aim to support near real-time operational management of smart Water 

Distribution Systems (WDSs). The novel WDF methodology is exclusively based on the analysis of 

water demand time series (i.e., demand signals) and makes use of Evolutionary Artificial Neural 

Networks (EANNs). It is implemented in a fully automated, data-driven and self-learning Demand 

Forecasting System (DFS) that is readily transferable to practice. The main characteristics of the 

DFS are: (a) continuous adaptability to ever changing water demand patterns and (b) generic and 

seamless applicability to different demand signals. The DFS enables applying two alternative WDF 

approaches. In the first approach, multiple EANN models are used in parallel to separately forecast 

demands for different hours of the day. In the second approach, a single EANN model with a fixed 

forecast horizon (i.e., one hour) is used in a recursive fashion to forecast demands. Both approaches 

have been tested and verified on a real-life WDS in the United Kingdom (UK). The results obtained 

illustrate that, regardless of the WDF approach used, the novel methodology allows accurate 

forecasts to be generated thereby demonstrating the potential to yield substantial improvements to the 

state-of-the-art in near real-time WDS management. The results obtained also demonstrate that the 

multiple-EANN-models approach slightly outperforms the single-EANN-model approach in terms of 

WDF accuracy. The single-EANN-model approach, however, still enables achieving good WDF 

performance and may be a preferred option in engineering practice as it is easier to setup/implement. 
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1. INTRODUCTION 

Water Demand Forecasting (WDF) is an important issue for water companies worldwide. It provides 

the basis for making operational, tactical and strategic decisions (Billings and Jones, 2008; Gardiner 

and Herrington, 1990) and can help to improve the performance of a Water Distribution System 

(WDS) by anticipating the corresponding system operation. However, forecasting water demand is a 

challenging task. Indeed, demand patterns from a WDS show daily, weekly and seasonal variations 

and are also influenced by socioeconomic and meteorological factors such as population 

characteristics or number of industrial establishment and air temperature or precipitations. The 

difficulties encountered because of the great variability of these factors have engendered a plethora of 

studies in an attempt to produce reliable demand forecasts (Donkor et al., 2012). 

The variety of methods that have been proposed for modelling and forecasting water demand patterns 

can be broadly classified into linear and nonlinear (Zhang, 2001). Examples of linear methods are 

univariate time series analysis - such as exponential smoothing and autoregressive integrated moving 

average models, and linear regression models (e.g., Hughes, 1980; Anderson et al., 1980; Maidment et 

al., 1985; Zhou et al., 2000; Alhumoud, 2008). Examples of nonlinear methods are nonlinear 

regression models, bilinear models, threshold autoregressive models, Artificial Neural Network 

(ANN) or ANN-based models, fuzzy logic, extended Kalman filter and genetic programming, and 

model trees (e.g., Jain et al., 2001; Kim et al., 2001; Jain and Ormsbee, 2002; Bougadis et al., 2005; 

Altunkaynak et al., 2005; Cutore et al., 2008; Nasseri et al., 2011; Bennett et al., 2013a). The linear 

methods have been widely used because they are easy to develop and implement, in addition to being 

simple to understand and interpret. However, water demand data have varying degrees of 

nonlinearity, which may not be adequately handled by the linear methods. In this scenario, the 

nonlinear methods (especially those that make use of a data-driven approach such as ANNs) can help 

improving the WDF performance. For example, Jain et al. (2001), Jain and Ormsbee (2002) and 

Bougadis et al. (2005) observed that ANN models outperform regression and univariate time series 

analysis. Similarly, Adamowski (2008) developed and compared relative performance of: (i) 39 

multiple linear regression models, (ii) 9 autoregressive integrated moving average models and (iii) 39 

ANN models; his study concluded that the latter perform the best. 

With regard to the forecast horizon (i.e., how far into the future demand is to be predicted) and to the 

periodicity (i.e., the time span between consecutive forecasts) of the forecast (Donkor et al., 2012), 

three main types of WDF can be discerned. These are: (i) the long-term WDF, (ii) the medium-term 

WDF and (ii) the short-term WDF (Gardiner and Herrington, 1990). The long-term WDF (i.e., annual 

forecasts for ten years or more) is useful for making strategic decisions on issues such as WDSs 
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capacity expansion and design of new WDSs. The medium-term WDF (i.e., monthly to annual 

forecasts for one to less than ten years) is useful for making tactical decisions on issues such as 

extensions of existing WDSs and investment planning. The short-term WDF (i.e., hourly to monthly 

forecasts for up to one year) is useful for making operational decisions on issues such as WDS 

management and optimisation. Taking this into consideration, it is clear that water companies would 

benefit from methods that enable performing WDF for all the forecast horizons in the short-term to 

long-term range (i.e., from 1 hour to 20-30 years). However, WDF generally aims at the evaluation of 

water management and savings policies (see – e.g., White and Fane, 2002) and research in the WDF 

field has mainly focused on satisfying the mandate of water utilities to maintain a reliable supply of 

potable water to the customers and to ensure that this level of reliability is maintained in future years. 

Therefore, methods aimed at supporting near real-time WDS management tasks such as on-line pump 

scheduling and dynamic hydraulic modelling (i.e., forecast horizons from 1 to 24 hours) have received 

comparatively less attention (Donkor et al., 2012; Bakker et al., 2013). 

The novel WDF methodology developed and presented in this paper aims to support the near real-

time management of smart WDS. The term “smart” is used here to indicate a WDS where several data 

technologies (such as a data-driven WDF system) help to operate the WDS (SWAN, 2014). This 

methodology is exclusively based on the analysis of observed demand data and makes use of the 

Evolutionary Artificial Neural Networks (EANNs) to predict water demand for up to 24 hours in the 

future. The water demand data (i.e. time series of historical demands) are, in the general case, 

estimated by mass balance analysis - i.e., from inflow/outflow signals and storage volume changes in 

the studied WDS subsystem. EANNs are biologically-inspired computational models that use 

Evolutionary Algorithms (EAs) (see – e.g., Holland, 1975; Schwefel, 1995; Koza, 1992) in 

conjunction with ANNs. In this framework, EAs are often used for designing ANN models. Common 

approaches involve performing tasks such as connection weight optimisation (e.g., Keesing and Stork, 

1991), architecture optimisation (e.g., Harp et al., 1991), parameter optimisation (e.g., Castillo et al., 

2000) and input data selection (e.g., Reeves and Taylor, 1998).  

A comprehensive (but not so recent) review of the different interactions/combinations between EAs 

and ANNs that have been proposed is given in Yao (1999). With particular regard to the water 

resources planning and management field, although EAs have been extensively applied to solve a 

wide range of problems (see – e.g., Nicklow et al., 2010), EANN applications are scarce. Noteworthy 

are, therefore, the works presented in Giustolisi and Simeone (2006) and Romano et al. (2013). 

Giustolisi and Simeone (2006) made use of EANNs for groundwater level prediction. Romano et al. 

(2013) made use of EANNs for forecasting pressure/flow values 15 minutes in the future and hence 

enable detection of pipe bursts and other events in WDSs. The key advantages of the EANNs 

identified in many of the aforementioned studies include: (i) their remarkable adaptability to dynamic 
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environments (i.e., EANNs can adapt to an environment as well as to changes in the environment) and 

(ii) the fact that they dramatically reduce the effort required from a human expert to design an ANN 

model for a given problem whilst enabling replicating or outperforming the quality of the results 

achievable through human expert intervention. 

The main advantage of the novel demand forecasting methodology presented here over 

aforementioned approaches is its self-learning ability which helps to adapt to the ever changing 

operating conditions in the WDS. This is of fundamental importance because, as stressed by Bakker et 

al. (2013), existing WDF approaches need to be improved with respect to adaptive functionality. The 

second advantage concerns the robustness of the WDF models building process. Indeed, some of the 

existing methods (e.g., Jain et al., 2001; Jain and Ormsbee, 2002; Bougadis et al., 2005) involve an 

arbitrary selection and use of various explanatory variables and/or different lags of the demand 

variable. This, in turn, provides a less rational basis for the inclusion of such variables in the WDF 

models (Donkor et al., 2012). The third advantage concerns the practicality of the methodology 

operationalisation - i.e., its application in an on-line environment. Unlike some of the methods 

proposed in the literature (e.g., Goodchild, 2003; Coomes et al., 2010), the methodology presented 

here does not make use of many or ad hoc explanatory variables, which pose the greatest challenge to 

practice in terms of collecting and keeping track of the data (Donkor et al., 2012; Bakker et al., 2013). 

Having said this, it is important to stress that the parsimoniousness of the EANN models resulting 

from the application of this methodology does not negatively affect the forecast quality. 

This paper is organised as follows. After this introduction, the Demand Forecasting System (DFS), 

which implements the novel WDF methodology presented in this paper, is described in the 

methodology section. Specifically, an overview of the DFS is given first. This is then followed by 

four sub-sections presenting the theoretical background and methodological details of the various data 

analyses performed by the DFS. Once this is done, the case study section presents the results of the 

DFS tests on demand time series (i.e., signals) from three District Metered Areas (DMAs) and a 

Water Supply Zone (WSZ) in the United Kingdom (UK). The DMAs are WDS subsystems isolated 

from the rest of the WDS by closing appropriate (boundary) valves. Flows in and out of the DMA are 

normally fully metered. The WSZs are larger WDS subsystems containing a number of DMAs which 

are supplied either by a single water source or a group of water sources blended within service 

reservoirs. Finally, the main conclusions are drawn and acknowledgements given. Several 

abbreviations are used in this paper. A list of these abbreviations can be found in Table 1. 
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Table 1. List of abbreviations. 

ANN Artificial Neural Network 

DFS Demand Forecasting System 

DMA District Metered Area 

DoW Day of the Week 

e Ensemble 

EA Evolutionary Algorithm 

EANN Evolutionary Artificial Neural Network 

FP&IS Fixed Parameters & Input Structure 

MAPE Mean Absolute Percentage Error 

MSE Mean Square Error 

NAN Not A Number 

NSIndex Nash-Sutcliffe index 

r Recursive 

ToD Time of the Day 

U With Updating 

UK United Kingdom 

WDF Water Demand Forecasting 

WDR Weight Decay Regularisation 

WDS Water Distribution System 

WSZ Water Supply Zone 

WoutU Without Updating 

YWS Yorkshire Water Services 

 

2. METHODOLOGY 

2.1. DFS overview 

The DFS presented here enables performing short-term (i.e., up to 24 hours in the future) demand 

forecasting by using two alternative approaches. In the first approach, a total of g EANN models (e.g., 

g=24 - if hourly demand values are considered) are built (i.e., trained and tested) and used. Each 

EANN model in this ensemble has a different forecast horizon (e.g., 1 hour ahead, 2 hours ahead, 

etc.), thus it predicts the water demand at a particular Time of the Day (ToD) (e.g., at 1 a.m., at 2 a.m., 

etc.). The WDF for the next 24 hours is performed by running the resulting g EANN models in 

parallel. In the second approach, only one EANN model is built and used. This EANN model has a 

fixed forecast horizon (e.g., 1 hour ahead) and WDF for the next 24 hours is performed by using it in 

a recursive fashion. Note that, hereafter, the acronym eEANNs, where “e” stands for “ensemble”, will 
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be used to refer to the first approach. Similarly, the acronym rEANN, where “r” stands for 

“recursive”, will be used to refer to the second approach. 

Figure 1 provides a diagrammatic representation of the DFS. This figure shows that the DFS consists 

of four main components: (i) the data pre-processing module, (ii) the ANN optimisation module, (iii) 

the ANN building module and (iv) the WDF module. For the specific demand signal being analysed, 

the data pre-processing module prepares the raw data in order to facilitate/improve the EANN 

model(s) building process and hence achieve more accurate WDF. For the specific demand signal 

being analysed and for each particular forecast horizon being considered, the ANN optimisation 

module automatically selects the optimal ANN input structure (e.g., number of past demand values to 

be used and additional explanatory variables to be used) and ANN parameters (e.g., number of hidden 

neurons and number of training cycles), all with the aim to obtain the best possible WDF 

performance. Finally, for the specific demand signal being analysed and for each particular forecast 

horizon being considered, the ANN building and WDF modules are used to develop the actual EANN 

model (by using the optimised input structure and parameters set) and to perform forecasting, 

respectively. 

Figure 1 also shows that the DFS has three main modes of operation: (i) the “Set-up” mode, (ii) the 

“Update” mode and (iii) the “Forecast” mode. These modes of operation define when the relevant 

data analyses in each DFS module are performed. The “Set-up” mode is used for tuning the data-

driven DFS when it is initialised (i.e., used for the first time to analyse a specific demand signal). 

Later on, it is used periodically (e.g., every three months) when the DFS is re-initialised (to account 

for seasonal variations, growing demand over time, etc.; or following occasional operational/other 

changes in the WDS - e.g., increased demand due to a new network expansion). The “Update” mode 

is used regularly (e.g., every week) when the DFS is updated (to constantly capture the WDS’s most 

recent operating conditions) thereby providing a continuously adaptive DFS. Finally, the “Forecast” 

mode is the normal operating mode used at every forecasting time (e.g., every hour - if the observed 

demands update the historical time series records of demand data that are stored into a “demand 

signals” database at hourly or sub-hourly intervals; or every 24 hours - if the observed demands 

update those historical time series records at daily intervals) to perform WDF. 
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Figure 1. Diagrammatic representation of the Demand Forecasting System. 

 

The DFS modules’ methodological details are presented in the following four sub-sections. 

2.2. Data pre-processing module 

Demand data from a WDS are often imperfect - i.e., with frequent erroneous timestamps, large parts 

of missing data, etc. For this reason, the effective cleaning and pre-processing of raw data is important 

to achieve accurate WDF. In view of this, the main objective of this module is to, for each demand 

signal being analysed, assemble a valuable set of demand data to be used for building the EANN 

model(s). The secondary objective of this module is to compute, for each demand signal being 

analysed and for each Day of the Week (DoW) (i.e., Monday, Tuesday, etc.), an “average day” vector 

whose values will be used as surrogate demand predictions when the DFS cannot return an output 

(e.g., due to lack of incoming data – faulty sensor). As it can be seen from Figure 1, the assembled 

dataset is then passed onto the ANN optimisation module (if the DFS is being initialised/re-initialised) 
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or directly to the ANN building module (if the DFS is being updated only). On the other hand, the 

computed “average day” vectors are passed on to the WDF module. 

The above is achieved by performing the following steps: (i) retrieving, for the specific demand signal 

being analysed, the latest m days (e.g., 90 days) of past historical raw data from the “demand signals” 

database, (ii) checking and correcting erroneous timestamps, (iii) creating a uniformly spaced time 

series, (iv) replacing blank entries with missing value indicators (NAN – ‘Not A Number’), (v) 

assigning ToD (i.e., a value between 1 and g, where 1 corresponds to midnight and g is the number of 

demand/NAN values in one day) and DoW (i.e., a value between 1 and 7) indices to each demand 

value, (vi) rearranging the resulting m-day time series into m vectors (i.e., one vector for each day 

with g demand/NAN values), (vii) using a heuristics-based procedure to discard vectors containing 

large parts of missing data, (viii) using the linear interpolation to fill in the missing values in each of 

the remaining vectors, (ix) grouping these vectors according to their relevant DoW and performing in 

sequence three statistical tests aimed at gradually filtering out vectors containing outliers and values 

that are not consistent with the expected demand variations assuming WDS normal operations (e.g., in 

the absence of pipe bursts or other unusual demands), (x) assembling the set of demand data for 

EANN model(s) training/testing by using all the remaining vectors and (xi) computing the “average 

day” vectors (each containing a total of g ToD averages) by using the remaining vectors in each 

DoW-group. Details of the above data analyses can be found in Romano et al. (2012) and Romano 

(2012). 

It is important to stress that here, however, the data pre-processing module is implemented in such a 

way that allows the DFS user to decide how many of the three statistical tests mentioned in step (ix) to 

perform. As a consequence, not only is the DFS user able to adjust (i.e., relax or make more stringent) 

the parameters employed by these statistical process control -based (Shewhart, 1931) tests (e.g., 

number of standard deviations from the mean that define the confidence limits for outliers detection) 

but also to perform only one or two statistical tests or not to perform these tests at all. The main 

reason for this is to enable the user to have the maximum flexibility in setting/finding a desired/most 

suitable working definition of “anomalous data” and hence the DFS striking a balance between 

accuracy of the demand predictions made with spurious data (e.g., outliers caused by data 

communication problems), data recorded during abnormal WDS operations (e.g., in the presence of a 

pipe burst) and data recorded during normal WDS operations. Indeed, it has to be noted that by 

filtering out vectors containing outliers and values that are not consistent with the expected demand 

variations assuming WDS normal operations and then making use of those pre-processed data series 

to train the EANN models, the DFS framework is only reliant on the (limited) extrapolation 

capabilities of the EANN model(s) when having to make predictions using anomalous demand data. 



8 

 

2.3. ANN optimisation module 

The objective of this module is to, for each demand signal analysed and for each forecast horizon 

considered, automatically select the ANN input structure and set of parameters that, when used for 

developing the relevant short-term ANN prediction model, enables it to yield the best WDF 

performance. The main reason for doing this is that different demand signals (e.g., from different 

DMA types - rural, residential, etc.) will have to be analysed in the studied WDS. As these signals 

may show extremely varying patterns, the use of a pre-defined ANN input structure and parameters 

set may lead to developing prediction models that exhibit sub-optimal forecasting performance. 

Furthermore, in order to accurately predict demand at increasing forecast horizons (e.g., from 1 hour 

to 24 hours), increasing the complexity of the ANN model (e.g., more hidden neurons) and/or 

increasing the complexity of its input structure (e.g., more past demand values in input to the ANN 

model) may be required. Taking all this into consideration, the potential benefits resulting from the 

use of the approach proposed here are two-fold: the quality of the ANN models’ predictions improves 

and the DFS becomes tailored to the specific demand signal/forecast horizon to which it is applied. 

The above is achieved here by using an EA-based optimisation strategy. The automatically selected 

ANN input structure(s) and parameters set(s) are then passed onto the ANN building module (see 

Figure 1) where they will be repeatedly (i.e., at every DFS updating) used for training and testing the 

(demand signal and forecast horizon specific) ANN prediction model(s), until being replaced by 

newly selected ones when the DFS is re-initialised. 

2.3.1. ANN model building issues 

Several issues have to be considered in order to build ANN models that exhibit good WDF 

performance for different demand signals/forecast horizons. These issues include the choice of: (i) the 

ANN structure, (ii) the transfer function, (iii) the training algorithm, (iv) the ANN parameters and (v) 

the ANN input structure. A number of preliminary sensitivity analysis type tests (the detailed results 

of which are not shown here due to space restrictions) were performed in order to investigate these 

issues for the problem at hand. A brief overview of the tests performed and of the main findings from 

these tests is given below (see Romano, 2012). 

With regard to the first three issues, the aforementioned tests investigated their influence on the WDF 

performance and training speed. The investigated ANN structures included: (i) the Feed Forward 

ANNs (Bishop, 1995) with one and two hidden layers, (ii) the Jordan ANN (Jordan, 1986) and (iii) 

the Elman ANN (Elman, 1990). The investigated transfer functions (for the Feed Forward ANN 

models only) included the logistic and the hyperbolic tangent transfer functions for the neurons in the 

hidden layer(s) and the logistic, hyperbolic tangent and linear transfer functions for the neuron in the 

output layer. The investigated training algorithms (for the Feed Forward ANN models only) included 
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the Back Propagation method, the Conjugate Gradient and the Levenberg-Marquardt algorithm 

(Rumelhart et al., 1986; Masters, 1995). The Feed Forward ANNs with a hyperbolic tangent transfer 

function for the neurons in the single hidden layer and a linear transfer function for the neuron in the 

output layer, trained using the Back Propagation method were identified as the most suitable 

candidates (i.e., faster training and better predictive accuracy). Furthermore, an approach whereby the 

DFS makes use of the same ANN structure, transfer function and training algorithm for every ANN 

model (i.e., for any demand signal and forecast horizon) was found not to affect the WDF 

performance significantly. In the light of the results obtained, the aforementioned ANN structure, 

transfer function, training algorithm and approach were selected for use in the DFS. Bearing this in 

mind, it is important to stress that this choice was also supported by the theoretical consideration that 

one hidden layer Feed Forward Back Propagation ANNs are capable of arbitrary non-linear function 

approximation (see – e.g., Hornick et al., 1989). 

With regard to the selection of the ANN parameters, the aforementioned tests investigated the 

influence of the number of hidden neurons on the forecasting performance. The tests revealed that 

training an ANN model using too few hidden neurons leads to poor performance but also, using an 

arbitrary large number of hidden neurons leads to overfitting the data (i.e., such ANN model closely 

approximates the training dataset but it lacks the power to generalise - i.e., it fails on the unseen 

testing dataset). In view of this finding, the approach selected for use in the DFS involves the use of 

the early stopping (Weigend, 1994) and the Weight Decay Regularisation - WDR - (Bishop, 1995) 

techniques. These techniques have been successfully used (e.g., Moody, 1992) to allow striking a 

balance between ANN learning and generalisation. Early stopping involves controlling the number of 

training cycles while WDR involves applying a penalisation coefficient α  (i.e., coefficient of WDR) 

to the weights of the ANN model. In this scenario, for each ANN model the right number of hidden 

neurons, the right number of training cycles and the right value of the coefficient of WDR have to be 

accurately chosen in order to achieve the best WDF performance. 

With regard to the ANN input structure, the aforementioned tests investigated the influence on the 

WDF performance of input structures including combinations of the following pieces of information: 

(i) a certain number of past demand values (i.e., LagSize), (ii) the ToD index associated with the 

forecast horizon converted into a field type form (i.e., ones and zeros) and (iii) the DoW index 

associated with the forecast horizon also converted into a field type form. This is shown in Figure 2. 

The results obtained revealed that not only the LagSize but also the use (or omission) of the other 

considered explanatory variables strongly influence the ANN models’ WDF performance. 

Furthermore, they showed that no general rule for the selection of the right input structure can be 

applied. Thus, similarly to what found for the ANN parameters, for each ANN model the right 
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LagSize and the right combination of the other considered explanatory variables have to be accurately 

chosen in order to achieve the best WDF performance. 

 

Figure 2. Artificial Neural Network for short-term Water Demand Forecasting showing a generic 

example of the investigated input structures. 

 

2.3.2. EA-based optimisation strategy 

This part of the methodology focuses on the selection of the optimal ANN input structure and 

parameters in the DFS, which is essentially a combinatorial problem. The use of a manual trial and 

error procedure is not be feasible bearing in mind that the DFS has to deal with different forecast 

horizons and, potentially, many hundreds of different demand signals in large real-life WDS. 

Similarly, the use of a full enumeration procedure would be far too computational expensive. 

Therefore, an EA-based optimisation strategy was selected. The main reason is that EAs do well in 

large search spaces by working only with a sample population and have the power to discover good 

solutions rapidly for difficult high-dimensional problems (De Jong, 2007). Specifically, similarly to 

Romano et al. (2013), an Evolutionary Strategy algorithm (Schwefel, 1995) is used here. 

The parameters of the Evolutionary Strategy algorithm are: (i) the number of parents per generation – 

µ, (ii) the number of offspring per generation – λ, (iii) the total number of fitness function evaluations 

– Nf.f.e. (i.e., termination condition), (iv) the probability of a parameter being perturbed – Pmut., (v) the 

standard deviation of normal (i.e., Gaussian) perturbation – σ (i.e., mutation strength) and (vi) the 
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selection operator – “+” or “,” (see Beyer and Schwefel, 2002). These parameters were chosen as 

shown in Table 2 after limited sensitivity type analysis. Note that, although the detailed results of this 

analysis are not shown here, it is worth reporting that the main finding confirmed the observation 

from research on meta-EAs that most EAs are fairly insensitive to exact parameter settings (see – e.g., 

De Jong, 2007). Indeed, for the range of parameters tested (i.e., µ equal to 5, 15 or 25, λ equal to 50, 

100 or 200, Nf.f.e. equal to 255, 515 or 1025, Pmut. equal to 0.4, 0.6 or 0.8, σ equal to 0.2, 0.4 or 0.6, and 

selection operator equal to “+” or “,”), the Evolutionary Strategy algorithm allowed finding ANN 

input structure and parameters sets that led to the development of EANN prediction models with good 

forecasting performances (as indicated by NSIndex > 0.9 for the various testing datasets – see below) in 

a computationally efficient manner (i.e., a single Evolutionary Strategy algorithm run completing in 

less than 15 minutes on a standard dual core personal computer with 3.48 Gb of RAM). 

Table 2. Values of the Evolutionary Strategy algorithm’s parameters. 

Parameter Value 

Number of parents per generation – µ 15 

Number of offspring per generation – λ 100 

Number of fitness function evaluations – Nf.f.e. 515 

Probability of a parameter being perturbed – Pmut. 0.6 

Mutation strength – σ 0.4 

Selection operator + 

 

Considering the ANN parameters and the variables that define the ANN input structure shown in 

Table 3 as the decision variables for the problem at hand, the aim of the Evolutionary Strategy used 

here can be stated as follows: to automatically find the set of decision variables that minimises the 

ANN model prediction error on the testing dataset (i.e., a randomly chosen sub-set – e.g., 30% – of 

the assembled EANN training/testing dataset – see the data pre-processing module sub-section). Note 

that, for each decision variable, Table 3 shows the range of values used in optimisation. These ranges 

were selected after carrying out a number of preliminary tests (not shown here due to space 

restrictions) aimed at defining the size of the search space that is likely to enable finding optimal 

solutions. 
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Table 3. Decision variables and associated ranges of variability. 

Decision variable Range of values used in optimisation 

Number of hidden neurons 10 - 100 

Number of training cycles 50 - 500 

Value of the coefficient of Weight Decay 
Regularisation – α 10-5 - 103 

LagSize (i.e., number of past demand values in 
input to the ANN prediction model) 2 - 168 

Time of the Day use/do-not-use 

Day of the Week use/do-not-use 
 

For each generation (i.e., cycle of the Evolutionary Strategy algorithm), the ANN model prediction 

error on the testing dataset is computed by using the Nash-Sutcliffe index - NSIndex - (Nash and 

Sutcliffe, 1970). This index is a normalised statistic that determines the relative magnitude of the 

residual variance compared to the measured data variance. The index values range between −∞ and 1, 

with 1 being the optimal value. A zero value indicates that model predictions are as accurate as the 

mean of the observed data, whereas a negative value occurs when the observed mean is a better 

predictor than the model. The NSIndex is commonly used in the literature and recommended by many 

(e.g., ASCE, 1993). 

2.4. ANN building module 

The objective of this module is to build a short-term ANN prediction model for the specific demand 

signal analysed and for each particular forecast horizon considered. This objective is achieved by 

training and testing the ANN prediction model(s) using the EANN training/testing dataset assembled 

in the data pre-processing module and the optimised ANN input structure(s) and parameters set(s) 

selected in the ANN optimisation module. The resulting EANN model(s) is(are) then passed onto the 

WDF module (see Figure 1) where it(they) will be used to predict future demands. 

Each EANN model developed here takes as an input a number (i.e., LagSize) of past demand values. 

Furthermore, depending on the input structure selected in the ANN optimisation module, it may have 

the following additional inputs: (1) the ToD index associated with the forecast horizon and (2) the 

DoW index associated with the forecast horizon. The output of each EANN prediction model is the 

predicted demand at the particular forecast horizon being considered (see Figure 2). 

The EANN model(s) training dataset consists of a sub-set (i.e., Train% - e.g., 80%) of the EANN 

training/testing dataset assembled in the data pre-processing module. The remaining data (i.e., Test%) 

form the testing dataset which is used to evaluate the EANN model(s) performance. The goodness-of-
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fit measure used to compare the predicted demand values with their observed counterpart in the 

testing dataset is the NSIndex (see the previous sub-section). 

Note that, as it can be observed from Figure 1, when this module runs in the “Update” mode, the 

EANN model(s) building process continues to make use of the ANN input structure(s) and parameters 

set(s) automatically selected at DFS (re)initialisation. The rationale is that, in the absence of 

operational/other WDS changes, it is expected that a demand signal will be affected only by relatively 

minor changes in the interval between two DFS re-initialisations. Thus, continuing to make use of the 

optimised ANN input structure(s) and parameters set(s) for updating the prediction model(s) is likely 

not to affect its(their) WDF performance significantly. Bearing this in mind, it is possible to state that, 

in principle, the added computational burden of using the EA-based optimisation strategy at short 

regular time intervals (e.g., weekly) is not justified. Using the EA-based optimisation strategy 

periodically (e.g., every three months - when the DFS is re-initialised), on the other hand, enables the 

DFS to take into account factors such as the seasonal demand variations and growing demand over 

time. Also, it would hardly pose a computational problem even if hundreds of demand signals have to 

be analysed and the computing power is scarce. This is because the DFS re-initialisations can be 

scheduled to run at different times for different demand signals (i.e., in a sequential fashion) during, 

for example, a three month period. 

2.5. WDF module 

The objective of this module is to predict water demand for the next 24 hours every time the DFS runs 

in the “Forecast” mode (i.e., at every forecasting time). This is achieved by using the EANN model(s) 

trained and tested in the ANN building module and one of the two WDF approaches described before 

- i.e., the eEANNs and rEANN approaches. For each EANN model, a number (e.g., as equal to the 

selected optimal LagSize in the case of the eEANNs approach) of latest raw demand values is 

retrieved from the “demand signals” database. Once this is done, this data is subjected to a pre-

processing procedure involving the following steps: (i) checking and correcting erroneous 

timestamps, (ii) creating a uniformly spaced time series and (iii) replacing blank entries with missing 

value indicators. Finally, demand prediction for the particular forecast horizon being considered is 

performed. 

3. CASE STUDY ANALYSES 

3.1. Case study description 

The results of two data analyses carried out on a single real-life case study are reported here. The 

main objective of these analyses was to test, evaluate and illustrate the capabilities of the DFS that 

implements the novel WDF methodology presented in this paper. More specifically: 
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• The first data analysis aimed at testing and evaluating the capabilities of the eEANNs and 

rEANN approaches when a one day time interval between consecutive forecasts was 

considered (i.e., 24 hour forecast periodicity). 

• The second analysis aimed at testing and evaluating the capabilities of the eEANNs and 

rEANN approaches when a 1 hour time interval between consecutive forecasts was considered 

(i.e., 1 hour forecast periodicity). 

Four different scenarios were investigated for all of the above. More specifically, the DFS was run: 

(1) making use of the ANN optimisation module and performing the weekly DFS updating (Scenario 

1), (2) making use of the ANN optimisation module and without performing the weekly DFS updating 

(Scenario 2), (3) without using the ANN optimisation module and performing the weekly DFS 

updating (Scenario 3) and (4) without using the ANN optimisation module and without performing 

the weekly DFS updating (Scenario 4). These scenarios enabled: (i) assessing the self-learning 

capabilities of the developed DFS in terms of ability to tailor itself to the analysed demand 

signal/considered forecast horizon and also in terms of ability to continuously adapt its parameters as 

conditions in the WDS change and (ii) evaluating if all this, in turn, results in more accurate WDF. 

The signals analysed here represent water demands in three Yorkshire Water Services (YWS) DMAs 

and a single YWS WSZ covering significant parts of two towns in the Yorkshire county. The three 

DMAs being studied are deemed representative of many UK DMAs. They have different 

characteristics and varying sizes. As an ensemble, they contain light industrial, urban and rural 

regions. Their individual total mains length varies between 16.2 and 25 km and the number of 

domestic properties varies between 1,129 and 3,493. The overall number of commercial properties 

varies between 103 and 340 and the number of commercial properties with an annual demand in 

excess of 400 m3 located in each of these DMAs varies between 31 and 193. Furthermore, one of 

these DMAs (i.e., DMA1) contains three major metered consumers (i.e., with an average annual 

demand in excess of 10,000 m3). The average daily inflows into these DMAs (for the analysis period 

considered – see later) were as follows: (DMA1) 25.6 l/s, (DMA2) 24.6 l/s and (DMA3) 6.4 l/s. The 

WSZ being studied is also deemed representative of other UK WSZs. It has a population of over 

70,000 and contains urban, industrial and rural regions. This WSZ is exclusively served by a service 

reservoir with an average daily outflow (for the relevant analysis period considered – see later) as 

equal to 5,553 l/s. Note that the studied DMAs are all leaf DMAs (i.e., without water exports), they all 

have only one inlet and there is no water storage in any of them. In the light of these characteristics, 

the flow measured at the inlet of each of these DMAs was assumed as equal to the actual DMA 

demand (= consumption + leakage). Similarly, the flow measured at the service reservoir outlet was 

assumed equal to the actual WSZ demand. 
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The original historical water demand time series were made up of flow readings averaged (by the flow 

sensors themselves) over a 15 minute sampling interval. In the case of the three DMAs, the utilised 

time series data referred to the 181 day period (i.e., approximately 6 months) between the 3rd of May 

2011 and the 30th of October 2011. In the case of the WSZ, the utilised time series data referred to the 

181 day period between the 30th of November 2010 and the 29th of May 2011. For the purposes of the 

data analyses performed here, however, the original historical water demand time series were re-

sampled (by averaging) at 1 hour time intervals (thus mimicking the situation whereby only 24 

demand values per day are available – i.e., g=24). Having said this, it is important to stress that, 

although historical time series were used, the demand data were fed to the DFS in a simulated on-line 

fashion (i.e., as the DFS would have been used in real-life – see the following sub-sections for further 

details). However, given that only approximately six months of demand data were considered here, 

the periodic (e.g., every 3 months) DFS re-initialisation was not performed. 

3.2. Results and discussion 

3.2.1. Daily forecasting analysis 

This sub-section summarises the analysis done and the results obtained when forecasting demands 

with a 24 hour forecast periodicity. This corresponds to a real-life situation where the observed 

demand data are communicated to the control room once a day. Note that, here, it was assumed that 

this daily data transfer occurred soon after observing the last demand value of the day at 23:00 p.m.. 

Hence, the 1 to 24 hours ahead demand predictions were made for the next day, with the 1 hour ahead 

prediction always corresponding to 00:00 a.m. and the 24 hours ahead prediction always 

corresponding to 23:00 p.m.. 

When the ANN optimisation module was used, the DFS was firstly initialised using the first 90 days 

(i.e., m=90) of data in each relevant water demand dataset (i.e., from the 3rd of May 2011 to the 31st of 

July 2011 - in the case of the three DMAs, and from the 30th of November 2010 to the 27th of 

February 2011 - in the case of the WSZ). Bearing in mind that (after the DFS initialisation) the 

demand data were fed to the DFS to simulate on-line operation, the DFS was at that point used once a 

day for forecasting the 1 to 24 hours ahead future demand values for the entire methodology’s 

validation period (i.e., 91 day period from the 1st of August 2011 to the 30th of October 2011 in the 

case of the three DMAs, and from the 28th of February 2011 to the 29th of May 2011 in the case of the 

WSZ) by subjecting it to weekly updates (i.e., Scenario 1). Following all this, the “Forecast” process 

was repeated without subjecting the DFS to the weekly updates (i.e., Scenario 2). As an example of 

the ANN parameters and variables that define the ANN input structure automatically selected during 

the DFS initialisation, Table 4 shows the selected DMA1 values for the two WDF approaches and 

different forecasting horizons analysed. 
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Table 4. Example of the automatically selected Artificial Neural Network parameters/input structures. 

Water 

Demand 

Forecasting 

approach 

Forecast 

horizon 

[h] 

Time of 

the Day 

variable 

Day of the 

Week 

variable 

LagSize 

[#] 

Hidden 

neurons 

[#] 

Training 

cycles  

[#] 

Coefficient of 

Weight Decay 

Regularisation 

[#] 

rEANN 1 used not-used 36 100 450 0.1 

eEANNs 

1 used not-used 30 50 400 0.1 

2 used not-used 36 40 500 0.1 

3 used used 30 70 450 1 

4 used not-used 30 100 400 0.1 

5 used not-used 36 50 150 0.00001 

6 used not-used 42 50 250 0.1 

7 used not-used 36 60 150 0.0001 

8 used not-used 48 40 250 0.1 

9 used used 48 80 250 0.1 

10 used not-used 48 70 300 0.1 

11 used not-used 42 30 300 0.1 

12 used not-used 42 100 300 1 

13 used not-used 48 80 250 0.1 

14 used not-used 36 30 500 1 

15 used not-used 48 40 500 0.1 

16 used not-used 42 90 400 0.1 

17 used not-used 42 10 250 0.1 

18 used not-used 30 20 350 0.1 

19 used not-used 30 60 200 0.00001 

20 used not-used 36 90 400 0.1 

21 used not-used 30 80 450 0.1 

22 used not-used 30 50 200 0.0001 

23 used not-used 30 80 250 0.001 

24 used not-used 18 40 350 0.0001 
 

When the ANN optimisation module was not used, the DFS was also firstly initialised using the first 

90 days of data in each relevant water demand dataset. Here, however, Fixed Parameters and a fixed 

Input Structure (i.e., FP&IS) were used for all the ANN prediction models. These fixed ANN 

parameters and input structure were chosen as follows. The number of hidden neurons was set equal 

to 60, the number of training cycles was set equal to 400 and the coefficient of WDR was set equal to 

10. The ANN input structure included 24 past demand values (i.e., LagSize=24) and the ToD and 

DoW indices associated with the forecast horizon. Note that the selection of these particular ANN 

parameters and input structure was found, after a series of preliminary tests, to ensure that, for all the 

analysed demand signals and for all the forecast horizons, the resulting ANN prediction models were 
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able to perform reasonably well (i.e., closely approximate the training datasets whilst allowing good 

generalisation performance). This was evaluated using the NSIndex. The preliminary tests performed 

here involved training and testing 100 ANN models for each demand signal and for each forecast 

horizon by varying (at discrete intervals) the decision variables shown in Table 3 within their 

associated ranges of variability. The detailed results of these tests are not shown here due to space 

restrictions. Once initialised, the DFS was used daily for performing 1 to 24 hours ahead prediction of 

future demand values for the entire validation period by subjecting it to weekly updates (i.e., Scenario 

3). The “Forecast” process was then repeated without subjecting the DFS to the weekly updates (i.e., 

Scenario 4). 

Table 5 summarises the forecasting performances obtained on the validation datasets for the four 

scenarios, two WDF approaches (which, as the ANN optimisation module was not always used, are 

generically called 1 ANN approach and 24 ANNs approach where appropriate in this and in the 

following sub-section) and all demand signals analysed. The WDF performances are expressed in 

terms of the NSIndex and in terms of the Mean Square Error (MSE) and the Mean Absolute Percentage 

Error (MAPE) indices (see – e.g., Donkor et al., 2012; Bennett et al., 2013b). The MSE and MAPE 

goodness-of-fit measures are used in addition to the NSIndex because: (1) MSE penalises WDF models 

that exhibit large deviations, hence it is useful for complementing the NSIndex in identifying models 

that fit the data well and (2) MAPE is independent of the actual demand signals’ magnitude, hence it 

is useful for comparing the performance of WDF models for different demand signals (e.g., from 

different DMAs or WSZs) and different WDSs. Note that lower values of both MSE and MAPE are 

better. 

The results shown in Table 5 lead to the following observations. Firstly, regardless of the WDF 

approach used, the best forecasting performances were obtained for Scenario 1. This provides 

evidence that the advanced self-learning methodological framework (i.e., involving EA-based 

optimisation and continuous adaptation) presented in this paper is sound and enables developing good 

forecast-quality models without requiring a high degree of human intervention. Indeed, although the 

careful human expert selection of the ANN parameters set and input structure (i.e., Scenarios 3 and 4) 

resulted in prediction models that performed reasonably well (i.e., average NSIndex values in the 0.92-

0.94 range, and average MAPE values in the 7.80%-9.48% range), these models exhibited constantly 

worse performance (i.e., average NSIndex values in the 0.95-0.97 range, and average MAPE values in 

the 5.28%-6.50% range) than their optimised counterparts (i.e., Scenarios 1 and 2). Furthermore, 

although less remarkably, systematic WDF performance improvements were observed by comparing 

the relevant results obtained for the “with updating” and “without updating” scenarios. 

Secondly, the results shown in Table 5 seem to suggest that more accurate forecasts can be achieved 

by using multiple ANN models. Indeed, in all the different scenarios investigated, the 24 ANNs 
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approach outperformed the 1 ANN approach. Despite this, with specific regard to the EA-based 

optimisation case, it is important to stress that the rEANN approach still enabled achieving relatively 

good WDF performances. Also, compared to the eEANNs approach, this approach requires less 

computational effort (as only one ANN prediction model has to be optimised and then trained and 

tested). All this suggests that the rEANN approach could nonetheless be satisfactorily and 

conveniently used by water companies. 

Table 5. Results of the 24 hour forecast periodicity analysis (refer to Table 1 for the meaning of the 

abbreviations used). 

 

As an example of the good quality forecasts achievable by using the optimised ANN prediction 

model(s) and both the alternative WDF approaches, Figure 3 shows a comparison of the WSZ demand 

values observed over a three day period during the first week of the methodology’s validation period 

DMA1 DMA2 DMA3 WSZ Averages 

U 

p 

d 

a 

t 

i 

n 

g 

 

 

 

 

 

  

  

1 

ANN 

  

  

  

  NSIndex 0.96 0.97 0.98 0.94 0.96 

EA MSE [(l/s)
2
] 4.89 1.69 0.19 275317.25 

  MAPE [%] 6.39 4.09 5.64 6.23 5.59 

  NSIndex 0.91 0.94 0.93 0.91 0.92 

FP&IS MSE [(l/s)
2
] 12.49 3.69 0.54 398415.71 

  MAPE [%] 9.83 6.40 9.24 8.84 8.58 

  

  

24 

ANNs 

  

  

  

  NSIndex 0.96 0.98 0.98 0.95 0.97 

EA MSE [(l/s)
2
] 4.80 1.54 0.19 211383.83 

  MAPE [%] 6.30 3.80 5.35 5.68 5.28 

  NSIndex 0.93 0.95 0.94 0.93 0.94 

FP&IS MSE [(l/s)
2
] 10.14 3.15 0.46 309517.58 

  MAPE [%] 9.07 5.69 8.68 7.75 7.80 

W 

i 

t 

h 

o 

u 

t 

 

U 

p 

d 

a 

t 

i 

n 

g 

  

  

1 

ANN 

  

  

  

  NSIndex 0.94 0.97 0.97 0.93 0.95 

EA MSE [(l/s)
2
] 7.60 1.71 0.22 342227.43 

  MAPE [%] 8.47 4.19 5.99 7.36 6.50 

  NSIndex 0.89 0.94 0.92 0.91 0.92 

FP&IS MSE [(l/s)
2
] 14.78 3.77 0.55 413164.15 

  MAPE [%] 11.93 6.48 10.12 9.37 9.48 

  

  

24 

ANNs 

  

  

  

  NSIndex 0.96 0.98 0.98 0.95 0.97 

EA MSE [(l/s)
2
] 5.97 1.55 0.20 226066.10 

  MAPE [%] 7.73 3.82 5.51 6.26 5.83 

  NSIndex 0.93 0.95 0.94 0.92 0.94 

FP&IS MSE [(l/s)
2
] 10.15 3.16 0.49 357520.00 

  MAPE [%] 10.54 5.70 9.72 8.63 8.65 
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with their predicted counterparts. Note that the rationale for showing this comparison for the WSZ 

demand signal is that the DFS exhibited the worst WDF performances in terms of NSIndex for this 

particular signal (see Table 5). 
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Figure 3. Three day comparison of the observed Water Supply Zone demand values with the 

corresponding demand values predicted by using recursive and ensemble Evolutionary Artificial 

Neural Network models. 

 

3.2.2. Hourly forecasting analysis 

This sub-section summarises the analysis done and the results obtained when forecasting demands 

with a 1 hour forecast periodicity. This corresponds to a real-life situation where the observed demand 

data are communicated to the control room every hour and enabled evaluating how the DFS performs 

when near real-time demand data are available. Here, the two WDF approaches that the DFS enables 

implementing and Scenarios 1 to 4 were investigated by running the DFS in the same way as 

described in the daily forecasting analysis sub-section with the only difference that, after the DFS 

initialisation, the DFS was run every hour producing the demand forecasts for the next 1 to 24 hours. 

Figures 4 and 5 show the averaged (across all four signals) NSIndex and MAPE values respectively, 

computed by comparing the observed demand values with all (i.e., for the entire validation period) 1 

hour ahead forecasted values, all 2 hours ahead forecasted values and so forth up to all 24 hours ahead 

forecasted values. These two figures clearly confirm the validity of the corresponding findings from 

the previous sub-section with regard to the use of the ANN optimisation module, the DFS weekly 
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updating mechanism and the two WDF approaches. They also provide further and more reliable 

evidence that the use of the proposed WDF methodology results in accurate forecasts. Indeed, with 

regard to the reliability of the evidence gathered, it has to be noted that the results obtained by using a 

24 hour forecast periodicity were dependent on the particular ToD the DFS was run. On the contrary, 

the results obtained here do not depend on any arbitrary assumption and enable drawing a more 

complete picture of the DFS performances for each scenario investigated, WDF approach 

implemented and particular forecast horizon considered. 

 

Figure 4. Validation datasets average Nash-Sutcliffe indices for each forecast horizon considered, 

scenario investigated and Water Demand Forecasting approach implemented (refer to Table 1 for the 

meaning of the abbreviations used in the legend). 

 

Figures 4 and 5 also show how the best performances were obtained for the first hour ahead. This 

behaviour was expected and it is understandable that the farther in the future a prediction has to be 

made the less accurate the prediction will be. Notwithstanding, especially when the ANN optimisation 

module was used and the DFS was updated weekly (i.e., Scenario 1), the performances appeared to 

almost plateau after the second/third hour ahead. This suggests that the developed DFS can be used 

confidently by the water companies for supporting the near real-time management of their WDSs. For 

example, when using the DFS for supporting near real-time pump scheduling, the water companies’ 
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personnel can be confident that the level of uncertainty of the farther in the future forecasts (e.g., 24 

hours ahead) will unlikely result in a service reservoir with insufficient water to satisfy the consumers 

demand. 

 

Figure 5. Validation datasets average Mean Absolute Percentage Errors for each forecast horizon 

considered, scenario investigated and Water Demand Forecasting approach implemented (refer to 

Table 1 for the meaning of the abbreviations used in the legend). 

 

As mentioned in the previous paragraph, Figures 4 and 5 show the DFS performances in terms of 

NSIndex and MAPE values aggregated for the four analysed demand signals. In order to provide the 

aforementioned complete picture of the DFS performances, it is therefore important to stress here that 

the patterns of the NSIndex and MAPE values observed for each analysed signal were very similar to 

those showed in Figures 4 and 5. Likewise, the patterns of the MSE values observed for each analysed 

signal did not make an exception to this. 

3.2.3. Further observations 

The results obtained in the case study clearly show the good performances of the WDF methodology 

presented. Nevertheless, those results should be, ideally, compared with the results reported in other 

studies from the literature and obtained using different short-term WDF methodologies. Such an 
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assessment is attempted here. However, it has to be born in mind that direct results comparison is not 

possible as the tests carried out in the studies that will be mentioned below involved the use of 

different approaches, datasets (of varying forecastability and length), explanatory variables and also 

diverse periodicities and forecast horizons. This said, as an indication only, note that the hourly WDF 

results reported in the studies by Zhou et al. (2002), Herrera et al. (2010) and Bakker et al. (2013), the 

daily WDF results reported in the study by Cutore et al. (2008), and the weekly WDF results reported 

in the studies by Jain et al. (2001) and Bougadis et al. (2005) all showed values of the computed 

NSIndex or Coefficient of Determination smaller than 0.90. In addition, the hourly WDF results 

reported in the studies by Alvisi et al. (2007) and Kim et al. (2012) showed MAPE values in the 4% to 

15% range. Given these reported figures, taking into consideration that NSIndex ≤ Coefficient of 

Determination (Murphy, 1995), and stressing once again the limitations of the comparative analysis 

tried here, it can be stated that performance improvements in terms of WDF accuracy/reliability over 

previously developed methods appear to be achievable by using the DFS. 

Bearing in mind the above, it has to be stressed that, in this paper, a comparison between the 

performance attained using the proposed self-learning and adaptive methodological framework and 

the performance attained using ANN models with fixed ANN parameters and input structure (with 

and without updating) is provided for both the daily and hourly forecasting analyses. The latter ANN 

models can be seen as the state-of-the-art in the short-term WDF research field (see – e.g., Jain et al., 

2001; Bougadis et al., 2005) and thus provide a suitable benchmark for (more robust) performance 

comparison. In view of this, the contribution of the novel WDF methodology implemented in the DFS 

is further highlighted. 

It is also worth noting here that the novel WDF methodology implemented in the DFS is of generic 

nature. It could therefore be applied for performing WDF at different (i.e., shorter or longer) forecast 

horizons and with varying periodicities. Allowing for this, the inclusion of additional determinants (if 

required), such as weather-related and/or socio-economic explanatory variable, in the relevant ANN 

prediction models could benefit from the automatic EA-based ANN input structure selection 

framework presented in this paper. Finally, yet again because of its generic nature, the presented 

methodology has the further potential to be applied for the prediction of other water-demand-related 

forecast variables that are of interest to water companies (e.g., daily peak demand, daily or monthly 

total system demand, annual per capita demand, etc.) and/or for the prediction of other signals coming 

from a WDS (e.g., various water quality parameters and pressures - although this may require, for 

example, the use of more advanced data pre-processing techniques – see Romano et al., 2010). 
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4. CONCLUSIONS 

Reliable short-term demand forecasting is of paramount importance for making informed operational 

decisions and hence for supporting the near real-time management of smart WDS. A novel short-term 

(i.e., up to 24 hours in the future) WDF methodology has been developed and presented here. As the 

developed methodology is exclusively based on the analysis of water demand signals, it results in 

parsimonious WDF prediction models that do not require a large number of explanatory variables and, 

hence, lengthy/complex data collection processes. Furthermore, by making use of EANN models, it 

provides water companies with an effortless but theoretically sound and robust tool for building those 

models. 

The above short-term WDF methodology is implemented in a fully automated, data-driven DFS that 

enables implementing two different WDF approaches whereby one or multiple EANN models are 

used. The DFS has advanced self-learning capabilities. That is, not only it can tailor itself to the 

particular demand signal being analysed and forecast horizon being considered but it is also able to 

dynamically recalibrate its parameters as conditions in the WDS change. All this, in turn, entails: (i) 

ability to work in an on-line environment and (ii) easy operationalisation and scalability. 

The developed DFS was tested on a real-life UK case study involving the use of different water 

demand data streams recorded at different time periods over the year. Data analyses conducted 

considered both 24 and 1 hour forecast periodicity. For each of these analyses, the two WDF 

approaches were tested and four different scenarios mainly aimed at assessing the DFS self-learning 

capabilities were investigated. 

The results obtained provide evidence that, regardless of the WDF approach used, the methodological 

framework presented in this paper is sound and enables developing good forecast-quality models 

requiring a minimal degree of human intervention. This, in turn, indicates that the developed DFS has 

the potential to yield substantial improvements to the state-of-the-art in near real-time WDS 

management. With regard to the WDF approach used, the results obtained show that the ensemble 

eEANNs approach outperformed the recursive rEANN approach. However, given that the rEANN 

approach requires less effort for its implementation and still enables achieving relatively good WDF 

performances, its use (if favoured by a water company) can be considered too. 

The future work should involve further testing and validation of the proposed DFS on longer time 

periods and a larger number of demand signals reflecting the wider range of operational conditions in 

different WDSs. The testing and validation of the DFS in an actual on-line environment should also 

be performed. Furthermore, the EA-based ANN input structure selection framework presented here 

could also be improved by letting the Evolutionary Strategy algorithm select the optimal LagStructure 



24 

 

(i.e., the combination of past demand values that best explain the future demand variations) rather 

than the LagSize. Indeed, the current method does not allow including, for example, t-24 and t-168 

hour lags only and a LagSize as equal to 24 means that the ANN model input includes all of the last 

24 past demand values. This methodological improvement would likely result in the generation of 

smaller/simpler ANN models that are faster to train and may also show better generalisation 

performances. In addition to all this, the DFS could also be further enhanced by considering 

information about holidays when assembling the training/testing datasets and/or as an extra input to 

the ANN prediction models. This methodological improvement would likely enable overcoming an 

important DFS limitation (i.e., inability to account for holidays). Finally, the application of the 

methodology presented here for forecasting water demand at different forecast horizons and with 

varying periodicities could be investigated, as well as its use for forecasting other water-demand-

related variables and WDS signals. 
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