
 

 

 

 

 

 

 

 

 

 

 

UML Modeling Guidelines 
Version 1.0 
March 13, 2015 
 

ONF TR-514 
 

 



UML Modeling Guidelines  Version 1.0 

ONF Document Type: Technical Recommendation 
ONF Document Name: UML Modeling Guidelines V1.0 
 
Disclaimer 

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES 
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, 
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR 
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, 
SPECIFICATION OR SAMPLE. 

Any marks and brands contained herein are the property of their respective owners. 
 
Open Networking Foundation 
2275 E. Bayshore Road, Suite 103, Palo Alto, CA 94303 
www.opennetworking.org 
 
©2015 Open Networking Foundation. All rights reserved. 
 
Open Networking Foundation, the ONF symbol, and OpenFlow are registered trademarks of the 
Open Networking Foundation, in the United States and/or in other countries. All other brands, 
products, or service names are or may be trademarks or service marks of, and are used to identify, 
products or services of their respective owners.      

Page 2 of 38  © Open Networking Foundation 

http://www.opennetworking.org/


UML Modeling Guidelines  Version 1.0 

 

1 Introduction ......................................................................................................................................... 6 

2 References ........................................................................................................................................... 6 

3 Abbreviations ...................................................................................................................................... 6 

4 Overview .............................................................................................................................................. 7 
4.1 Documentation Overview .............................................................................................................. 7 
4.2 Modeling approach ....................................................................................................................... 8 
4.3 General Requirements .................................................................................................................. 9 

5 UML Artifact Descriptions .................................................................................................................. 9 
5.1 Object Classes .............................................................................................................................. 9 

5.1.1 Object Class Notation ......................................................................................................... 9 
5.1.2 Object Class Properties .................................................................................................... 10 

5.2 Attributes in Object Classes ........................................................................................................ 11 
5.2.1 Attribute Notation .............................................................................................................. 11 
5.2.2 Attribute Properties ........................................................................................................... 12 

5.3 Associations ................................................................................................................................ 14 
5.3.1 Association Notation ......................................................................................................... 14 
5.3.2 Association Properties ...................................................................................................... 17 

5.4 Interfaces .................................................................................................................................... 18 
5.4.1 «Interface» Notation ......................................................................................................... 18 
5.4.2 «Interface» Properties ...................................................................................................... 19 

5.5 Interface Operations ................................................................................................................... 20 
5.5.1 Operation Notation ........................................................................................................... 20 
5.5.2 Operation Properties ........................................................................................................ 20 

5.6 Operation Parameters................................................................................................................. 22 
5.6.1 Parameter Notation .......................................................................................................... 22 
5.6.2 Parameter Properties ....................................................................................................... 23 

5.7 Notifications ................................................................................................................................ 25 
5.8 Types .......................................................................................................................................... 25 

5.8.1 Type Notation ................................................................................................................... 25 
5.8.2 Type Properties ................................................................................................................ 26 

5.9 Qualifiers ..................................................................................................................................... 27 

6 UML Profile Definitions ..................................................................................................................... 28 
6.1 Additional ONF Properties Definitions ........................................................................................ 28 
6.2 Modeling Lifecycle Definitions .................................................................................................... 30 
6.3 ONF Open Model Profile Files .................................................................................................... 31 

7 Recommended Modeling Patterns .................................................................................................. 31 

Page 3 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

7.1 File Naming Conventions ............................................................................................................ 31 
7.2 Model Structure ........................................................................................................................... 31 

7.2.1 Generic Model Structure ................................................................................................... 31 
7.2.2 ONF Specific Model Structure .......................................................................................... 32 

7.3 Flexible Attribute Assignment to Object Classes ........................................................................ 33 
7.4 Use of Conditional Packages ...................................................................................................... 34 
7.5 Use of XOR/Choice ..................................................................................................................... 35 

7.5.1 Xor Constraint ................................................................................................................... 35 
7.5.2 «Choice» ........................................................................................................................... 36 

7.6 Diagram Guidelines .................................................................................................................... 37 
 
List of Figures 
Figure 4.1: ONF Specification Architecture ................................................................................................... 8 
Figure 5.1: Graphical Notation for Object Classes in ONF ........................................................................... 9 
Figure 5.2: Graphical Notation for Object Classes without Attributes Compartment .................................... 9 
Figure 5.3: Graphical Notation for Object Classes with Attributes and Deprecated Operations 

Compartment ........................................................................................................................................ 10 
Figure 5.4: «OpenModelClass» Stereotype ................................................................................................ 10 
Figure 5.5: Potential Choice Annotation for Object Classes ....................................................................... 11 
Figure 5.6: Graphical Notation for Object Classes with Attributes .............................................................. 12 
Figure 5.7: «OpenModelAttribute» Stereotype ........................................................................................... 13 
Figure 5.8: «PassedByReference» Stereotype........................................................................................... 14 
Figure 5.9: Bidirectional Association Relationship Notation ....................................................................... 15 
Figure 5.10: Unidirectional Association Relationship Notation ................................................................... 15 
Figure 5.11: – Non-navigable Association Relationship Notation ............................................................... 15 
Figure 5.12: Aggregation Association Relationship Notation ...................................................................... 15 
Figure 5.13: Composite Aggregation Association Relationship Notation ................................................... 16 
Figure 5.14: Papyrus Settings for Composite Aggregation ......................................................................... 16 
Figure 5.15: Generalization Relationship Notation (normal and conditional) ............................................. 16 
Figure 5.16: Dependency Relationship Notation (normal and naming) ...................................................... 16 
Figure 5.17: Potential Annotations for Associations ................................................................................... 18 
Figure 5.18: Graphical Notation for «Interface» in ONF ............................................................................. 19 
Figure 5.19: Graphical Notation for «Interface» without Attributes Compartment ...................................... 19 
Figure 5.20: «OpenModelInterface» Stereotype ......................................................................................... 20 
Figure 5.21: Graphical Notation for «Interface» with Operations................................................................ 20 
Figure 5.22: «OpenModelOperation» Stereotype ....................................................................................... 22 
Figure 5.23: Graphical Notation for «Interface» with Operations and Parameters ..................................... 23 
Figure 5.24: «OpenModelParameter» Stereotype ...................................................................................... 24 
Figure 5.25: «PassedByReference» Stereotype......................................................................................... 24 
Figure 5.26: Graphical Notation for «Signal» .............................................................................................. 25 
Figure 5.27: Graphical Notation for «DataType» ........................................................................................ 25 
Figure 5.28: Graphical Notation for «Enumeration» ................................................................................... 26 
Figure 5.29: Graphical Notation for «PrimitiveType» .................................................................................. 26 
Figure 5.30: Potential Annotations for Data Types ..................................................................................... 27 
Figure 6.1: UML Artifact «Stereotypes» ...................................................................................................... 28 
Figure 6.2: Lifecycle «Stereotypes» ............................................................................................................ 31 
Figure 7.1: Core Model and Sub-Models .................................................................................................... 32 
Figure 7.2: ONF Model Structure (snapshot) .............................................................................................. 33 
Figure 7.3: Pre-defined Packages in a UML Module .................................................................................. 33 
Figure 7.4: Flexible Attribute Assignment to Object Classes ...................................................................... 34 
Figure 7.5: Enhancing Object Classes Using Conditional Packages ......................................................... 35 
Figure 7.6: {xor} Notation ............................................................................................................................ 35 

Page 4 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Figure 7.7: Information Model Element Example Using «Choice» Notation ............................................... 36 
Figure 7.8: Operations Model Element Example Using «Choice» Notation ............................................... 37 
Figure 7.9: Sink/Source/Bidirectional Termination Points Example Using «Choice» Notation .................. 37 
 
 

List of Tables 
Table 5.1: Table 11.1/[3] – Collection Types for Properties ........................................................................ 12 
Table 6.1: UML Artifact Properties Defined in Complex «Stereotypes» ..................................................... 29 
 
 

Document History 
 

Version Date Description of Change 

1.0 March 13, 2015 Initial version 

 

  

Page 5 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

1 Introduction 
This Technical Recommendation defines the guidelines that have to be taken into account during 
the creation of a protocol-neutral UML (Unified Modeling Language) information model. These 
UML Modeling Guidelines are valid for the whole ONF; i.e., are not specific to any WG, 
technology or management protocol. 

UML defines a number of basic model elements (UML artifacts). In order to assure a consistent 
ONF-wide harmonized information model, only a selected subset of these artifacts are used in 
the UML model guidelines in this document. The semantic of the selected artifacts is defined in 
[2]. 

The documentation of each basic model artifact is divided into three parts: 

1. Short description 

2. Graphical notation examples 

3. Properties 

The guidelines have been developed using the Papyrus open source UML tool [1]. 

2 References 
[1] Papyrus Eclipse UML Modeling Tool (https://www.eclipse.org/papyrus/) 
[2] Unified Modeling Language™ (UML®) (http://www.uml.org/) 
[3] OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4 
[4] 3GPP/TM Forum Model Alignment JWG: FMC Model Repertoire 

(ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-
SDO_Model_Alignment/S5eMA20139.zip) 

3 Abbreviations 
CORBA Common Object Request Broker Architecture 

DS Data Schema 

FMC Fixed-Mobile Convergence 

HTTP Hypertext Transfer Protocol 

IM Information Model 

IMP Information Modeling Project (ONF Services Area) 

JMS Java Message Service 

JSON JavaScript Object Notation 

JWG Joint Working Group (TM Forum, 3GPP) 

Page 6 of 38  © Open Networking Foundation 

https://www.eclipse.org/papyrus/
http://www.uml.org/
ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-SDO_Model_Alignment/S5eMA20139.zip
ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-SDO_Model_Alignment/S5eMA20139.zip


UML Modeling Guidelines  Version 1.0 

LCC Lower Camel Case 

LTP Logical Termination Point 

NA Not Applicable 

NBIWG NorthBound Interface WG (ONF) 

OF Open Flow 

OMG Object Management Group 

OTWG Optical Transport WG (ONF) 

PM Performance Monitoring 

SDO Standards Developing Organization 

UCC Upper Camel Case 

UML Unified Modeling Language 

XML Extensible Markup Language 

WG Working Group 

4 Overview 

4.1 Documentation Overview 
This document is part of a series of Technical Recommendations. The location of this document 
within the documentation architecture is shown in Figure 4.1 below: 

Page 7 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

UML to DS Mapping
Guidelines

UML
|

XML

UML
|

JSON

Core Fragment
Modules

Foundation Forwarding

…Topology

WG-specific
Fragments

G
ui

de
lin

es

xx

xx

gu
id

e

Interface-specific
Data Schemas

xx

xx

Interface-specific
Encodings

mapping

mapping

mapping
gu

id
e

pruning
re-factoring

pruning
re-factoring

pruning
re-factoring

OTWG a

Purpose-specific
IMs

NBIWG x

OTWG b

UML
|

YANG

gu
id

e

gu
id

e

gu
id

e

ONF-Wide UML 
Information Model

U
M

L M
od

el
s

xxWG z

Interface Development Process Description

guide

guide

guide

guide

guide

guide

guide

xx

UML
|

OF

OTWG

xxWG

NBIWG

UML to DS Mapping
Guidelines

UML
|

XML

UML
|

JSON

Core Fragment WG-specific
Fragments

G
ui

de
lin

es

xx

xx

gu
id

e

Interface-specific
Data Schemas

xx

xx

Interface-specific
Encodings

mapping

mapping

mapping
gu

id
e

pruning
re-factoring

pruning
re-factoring

pruning
re-factoring

OTWG a

Purpose-specific
IMs

NBIWG x

OTWG b

UML
|

YANG

gu
id

e

gu
id

e

gu
id

e

ONF-Wide UML 
Information Model

U
M

L M
od

el
s

xxWG z

Interface Development Process Description

guide

guide

guide

guide

guide

guide

guide

xx

UML
|

OF

OTWG

xxWG

NBIWG

Core Network 
(Forwarding, Topology, 

Termination, …), 
Foundation, …

 

Figure 4.1: ONF Specification Architecture 

 

4.2 Modeling approach 
The information model is split into a static part and a dynamic part; i.e., data model is decoupled 
from operations model. 

Important note: 

It is important to understand that the UML class diagrams always show only parts of the 
underlying model data base (data dictionary). E.g., object classes shown without attributes do not 
mean that the object class has no attributes, they could be hidden in a diagram. The complete 
model is contained in the data dictionary which contains all definitions. 

Page 8 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 

4.3 General Requirements 
• The UML 2.4 (Unified Modeling Language) is used as a notation for the model. 
• The model shall be protocol-neutral, i.e., not reflect any middleware protocol-specific 

characteristics (like e.g., CORBA, HTTP, JMS). 
• The model shall be map-able to various protocol-specific interfaces. 

It is recommended to automate this mapping supported by tools. 
• Traceability from each modeling construct back to requirements and use cases shall be 

provided whenever possible. 

 

5 UML Artifact Descriptions 

5.1 Object Classes 
Object classes are used to convey a static1 representation of an entity, including properties and 
attributes; i.e., data model, the static part of the model. 

5.1.1 Object Class Notation 

 

 

Figure 5.1: Graphical Notation for Object Classes in ONF 

As highlighted in Figure 5.1, an object class is represented with a name compartment and an 
attributes compartment. The attributes compartment can be set in a diagram to not expose the 
attributes or to expose some or all of the attributes. 

In some diagrams the attributes are not exposed so as to reduce clutter, in others only a subset of 
the attributes is exposed so as to focus attention. It is also possible to hide the attribute 
compartment of a class in the class diagrams where a large number of classes need to be shown, 
as depicted in Figure 5.2. 

 
Figure 5.2: Graphical Notation for Object Classes without Attributes Compartment 

1 Not about operations acting on the entity. 

Page 9 of 38  © Open Networking Foundation 

                                                 



UML Modeling Guidelines  Version 1.0 

The name compartment may also show stereotypes for the class where relevant. When showing 
stereotypes the compartment will include the stereotype «OpenModelClass» (as all classes in the 
ONF model have this stereotype by default) and may also include other stereotypes. 

In the general UML definition a class may have name, attribute and operation compartments, as 
shown in Figure 5.3, but as in the ONF model the static part and the dynamic part of the model 
are decoupled, the operation compartment, is not used and always hidden. 

 
Figure 5.3: Graphical Notation for Object Classes with Attributes and Deprecated Operations 

Compartment 

5.1.2 Object Class Properties 

An object class  has the following properties: 

• Name 
Follows Upper Camel Case (UCC). Each class in the model has a unique name. An 
example of Upper Camel Case: SubNetworkConnection. 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Superclass(es) 
Inheritance and multiple inheritance may be used to deal with shared properties. 

• Abstract 
Indicates if the object class can be instantiated or is just used for inheritance. 

• Additional ONF properties are defined in the «OpenModelClass» stereotype which 
extents 
( ) by default (required) the «metaclass» Class: 

 
Figure 5.4: «OpenModelClass» Stereotype 

Page 10 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

• objectCreationNotification (only relevant in the purpose-specific modules of the 
ONF-wide Information Model; see Figure 4.1) 
Defines whether an object creation notification has to be sent when the object 
instance is created. 

• objectDeletionNotification (only relevant in the purpose-specific modules of the 
ONF-wide Information Model; see Figure 4.1) 
Defines whether an object deletion notification has to be sent when the object 
instance is deleted. 

• support 
This property qualifies the support of the object class at the management interface. 
See definition in section 5.9. 

• condition 
This property contains the condition for the condition-related support qualifiers. 

• Choice 
This stereotype identifies an object class as a choice between different alternatives. 

 
Figure 5.5: Potential Choice Annotation for Object Classes 

• UML/Papyrus defined class properties that are not used in ONF: 
• Is leaf 
• Is active 
• Visibility 

 

5.2 Attributes in Object Classes 
Attributes contain the properties2 of an object class. Note that the roles of navigable association 
ends become an attribute in the associated object class. 

5.2.1 Attribute Notation 

The notation is: 

<visibility> <attribute name> : <attribute type> [<multiplicity>] = <default value> 

Note: When no default is relevant or no default is defined, the “=” is not shown. 

2 In Papyrus an attribute is a property. 

Page 11 of 38  © Open Networking Foundation 

                                                 



UML Modeling Guidelines  Version 1.0 

 
Figure 5.6: Graphical Notation for Object Classes with Attributes 

5.2.2 Attribute Properties 

An attribute has the following properties: 

• Name 
Follows Lower Camel Case (LCC) and is unique across all attribute names in the model. 
An example of Lower Camel Case: subNetworkConnectionIdentifier. The plural form is 
"<attribute name>List". 
Boolean typed attribute names always start with a verb like ‘is’, 'must', etc. (e.g., 
‘isAbstract’) and the whole attribute name must be composed in a way that it is possible 
to answer it by "true" or "false". 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Ordered 
For a multi-valued multiplicity; this specifies whether the values in an instantiation of 
this attribute are sequentially ordered; default is false. 

• Unique 
For a multi-valued multiplicity, this specifies if the values of this attribute instance are 
unique (i.e., no duplicate attribute values); default is true. 
 
Excerpt from [3]: When Unique is true (the default), the collection of values may not 
contain duplicates. When Ordered is true (false being the default) the collection of values 
is ordered. In combination these two allow the type of a property to represent a collection 
in the following way: 
 

Table 5.1: Table 11.1/[3] – Collection Types for Properties 

Ordered Unique Collection type 
false true Set 
true true OrderedSet 
false false Bag 
true false Sequence 

 

• Read Only 
If true, the attribute may only be read, and not changed by the client. The default value is 

Page 12 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

false. The state is dependent on the additional ONF attribute property writeable. I.e., if 
the attribute cannot be set/changed by the client, it is read only. 

• Type 
Refers to a data type; see section 5.8. 

• Default Value 
Provides the value that the attribute has to start with in case the value is not provided 
during creation, or already defined because of a system state. 
In cases where a default value makes no sense (e.g., if representing the state of the 
system) it is undefined which is shown by “--“. 

• Multiplicity (*, 1, 1..*, 0..1, …) 
Defines the number of values the attribute can simultaneously have. 
 * is a list attribute with 0, one or multiple values; 
 1 attribute has always one value; 
 1..* is a list attribute with at least one value; 
 0..1 attribute may have no or at most one value; 
Default value is 1. 
Other values are possible; e.g., “2..17”. 

• Additional ONF properties are defined in the «OpenModelAttribute» stereotype which 
extents 
( ) by default (required) the «metaclass» Property: 

 
Figure 5.7: «OpenModelAttribute» Stereotype 

• attributeValueChangeNotification (only relevant in the purpose-specific modules of 
the ONF-wide Information Model; see Figure 4.1) 
This property defines whether a notification has to be raised when the attribute 
changes its value or not. 

• isInvariant 
Identifies if the value of the attribute can be changed after it has been created. 

• valueRange 
Identifies the allowed values for the attribute. 

• support 
This property qualifies the support of the attribute at the management interface. See 
definition in section 5.9. 

Page 13 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

• condition 
This property contains the condition for the condition-related support qualifiers. 

• Other ONF properties: 
• passedByReference 

This property shall only be applied to attributes that have an object class defined as 
their type; i.e., on a case by case basis. 
The property defines that the attribute contains only the reference (name, identifier, 
address) of the referred object instance(s) when being transferred across the interface. 
Otherwise the attribute contains the complete information of the object instance(s) 
when being transferred across the interface. 

 
Figure 5.8: «PassedByReference» Stereotype 

• UML/Papyrus defined attribute properties that are not used in ONF: 
• Is derived 
• Is derived union 
• Is leaf 
• Is static 
• Visibility 

 

5.3 Associations 
Associations are defined between object classes. Associations have association-ends. The 
association ends specify the role that the object at one end of a relationship performs. 

5.3.1 Association Notation 

The following examples show the different kinds of associations that are used in the ONF model. 

Figure 5.9 shows a bi-directional navigable association where each object class has a pointer to 
the other. The role name becomes the name of the corresponding attribute. I.e., in the example: 
ClassA will have an attribute named “_classBRefList” pointing to ClassB and vice versa. 

 

Page 14 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Figure 5.9: Bidirectional Association Relationship Notation 

 

Figure 5.10 shows a unidirectional association (shown with an open arrow at the target object 
class) where only the source object class has a pointer to the target object class and not vice-
versa. 

 
Figure 5.10: Unidirectional Association Relationship Notation 

 

Figure 5.11 shows a uni-directional non-navigable association where each object class does not 
have a pointer to the other; i.e., such associations are just for illustration purposes. 

 
Figure 5.11: – Non-navigable Association Relationship Notation 

 

An aggregation is a special type of association in which objects are assembled or configured 
together to create a more complex object. Aggregation protects the integrity of an assembly of 
objects by defining a single point of control called aggregate, in the object that represents the 
assembly. 

 
Figure 5.12: Aggregation Association Relationship Notation 

 

A composite aggregation association is a strong form of aggregation that requires a part instance 
be included in at most one composite at a time. If a composite is deleted, all of its parts are 
deleted as well; i.e., the lifecycle of ClassB is tied to the lifecycle of ClassA. 

Note: In the example below, ClassA names ClassB instances; defined by the «Names» 
stereotype. 

 

Page 15 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Figure 5.13: Composite Aggregation Association Relationship Notation 

 

 
Figure 5.14: Papyrus Settings for Composite Aggregation 

A generalization association indicates a relationship in which one class (the child) inherits from 
another class (the parent). A generalization relationship may be conditional, identified by the 
«Cond» stereotype. 

 
 

 
Figure 5.15: Generalization Relationship Notation (normal and conditional) 

“A dependency is a relationship that signifies that a single or a set of model elements requires 
other model elements for their specification or implementation. This means that the complete 
semantics of the depending elements is either semantically or structurally dependent on the 
definition of the supplier element(s)...“, an extract from [2]. 
A dependency relationship may define naming identified by the «NamedBy» stereotype. 

 
 

 
Figure 5.16: Dependency Relationship Notation (normal and naming) 

Page 16 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 

5.3.2 Association Properties 

An association has the following properties: 

• Name 
Follows Upper Camel Case (UCC) and is unique across all association names defined in 
the whole model. 
The format is "<Class1Name><VerbPhrase><Class2Name>" where the verb phrase 
creates a sequence that is readable and meaningful. 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Abstract 
Associations which are just for explanation to the reader of the model are defined as 
"abstract". Their ends are not navigable and have no role names. Abstract associations 
must not be taken into account in a protocol specific implementation. 

• Type 
The following types are used: 
• inheritance, 
• simple association, 
• composition, 
• aggregation. 

• Role Name 
Follows Lower Camel Case (LCC) with an underscore “_” prefix and identifies the role 
that the object plays at this end of the association. The plural form is "_<role name>List". 
Only navigable association ends have role names and follow the definitions made for 
attributes in section 5.2. 

• Role Type 
The type of the role is fixed to the object class attached to the association end. Therefore 
it is important to define the type as passedByReference or passedByValue. The 
«PassedByReference» stereotype identifies that the role (becoming an attribute) that has 
the stereotype associated, contains only the reference (name, identifier, address) to the 
referred object instance(s) when being transferred across the interface. Otherwise the role 
(becoming an attribute) contains the complete information of the object instance(s) when 
being transferred across the interface. 

• Role Multiplicity 
Identifies the number of object instances that can participate in an instance of the 
association. 

• Additional ONF properties: 
• «Names» 

The «Names» stereotype identifies that the association is used to define the naming. 
• «NamedBy» 
• The «NamedBy» stereotype identifies that a dependency relationship is used to define 

naming. 

Page 17 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

• «Cond» 
The «Cond» stereotype identifies that the association is conditional. The condition is 
also provided. 

• «StrictComposite» 
The «StrictComposite» stereotype can only be applied to associations with a 
composite end (i.e., composite aggregation association). It means that the content of 
the composed classes is part of the parent class and has no opportunity for 
independent lifecycle. The composed classes are essentially carrying attributes of the 
parent class where the composite is used to provide grouping of similar properties. 
The composed classes just provide groups of attributes for the parent class; i.e., they 
are abstract and cannot be instantiated. 
Whereas in an association with a composite end that is not StrictComposite the 
composed class is a part that has a restricted independent lifecycle. In this case an 
instance of the composed class can be created and deleted in the context of the parent 
class and should be represented as a separate instance from the parent in an 
implementation. This is especially true where there is a recursive composition. It is 
possible that in some cases the composed instance could move from one parent to 
another so long as it exists with one parent only at all points of the transaction. This 
move is not meaningful for a class associated via a StrictComposite association. 

 
Figure 5.17: Potential Annotations for Associations 

• UML/Papyrus defined attribute properties that are not used in ONF: 
• Visibility 

 

5.4 Interfaces 
An «Interface» is used to group operations, i.e., models the dynamic part of the model. 
Groupings of operations can be used to modularize the functionalities of the specification. 

Note: Interfaces (and operations) may only be defined in the purpose-specific modules of the 
ONF-wide Information Model; see Figure 4.1. 

5.4.1 «Interface» Notation 

Interfaces are identified by the stereotype «Interface». 

Page 18 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 5.18: Graphical Notation for «Interface» in ONF 

 

«Interfaces» usually have name, attributes and operations compartments. In the ONF model the 
static part and the dynamic part of the model are decoupled. Therefore, the attributes 
compartment is not used and always empty. It is also possible to hide the attributes compartment 
in the interface diagrams. 

 
Figure 5.19: Graphical Notation for «Interface» without Attributes Compartment 

 

Note: The graphical notation of an «Interface» may show an empty operation compartment so as 
to reduce clutter even if the «Interface» has operations. 

 

5.4.2 «Interface» Properties 

An «Interface»  has the following properties: 

• Name 
Follows Upper Camel Case (UCC) and is unique across all «Interface» names in the 
model. 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Superinterface(s) 
Inheritance and multiple inheritance may be used. 

• Abstract 
Indicates if the «Interface» can be instantiated or is just used for inheritance. 

• Additional ONF properties are defined in the «OpenModelInterface» stereotype which 
extents 
( ) by default (required) the «metaclass» Interface: 

Page 19 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 5.20: «OpenModelInterface» Stereotype 

• support 
This property qualifies the support of the «Interface» at the management interface. 
See definition in section 5.9. 

• condition 
This property contains the condition for the condition-related support qualifiers. 

• UML/Papyrus defined interface properties that are not used in ONF: 
• Is leaf 
• Visibility 

 

5.5 Interface Operations 

Operations  can be defined within an «Interface». An «Interface» must have at least one 
operation. 

Note: Operations may only be defined in the purpose-specific modules of the ONF-wide 
Information Model; see Figure 4.1. 

5.5.1 Operation Notation 

 
Figure 5.21: Graphical Notation for «Interface» with Operations 

5.5.2 Operation Properties 

An operation has the following properties: 

• Name 
Follows Lower Camel Case (LCC) and is unique across all operation names defined in 
the whole model. 

Page 20 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Pre-condition(s) 
This property defines the conditions that have to be true before the operation can be 
started (i.e., if not true, the operation will not be started at all and a general “precondition 
not met” error will be returned, i.e., exception is raised). 

• Post-condition(s) 
This property defines the state of the system after the operation has been executed (if 
successful, or if not successful, or if partially successful). 
Note that partially successful post-condition(s) can only be defined in case of non-atomic 
operations. 
Note that when an exception is raised, it should not be assumed that the post-condition(s) 
are satisfied. 

• Parameter(s) 
See section 5.6. 

• Operation Exceptions 
List the allowed exceptions for the operation. 
The model uses predefined exceptions which are split in 2 types: 
- generic exceptions which are associated to all operations by default 
- common exceptions which needs to be explicitly associated to the operation. 
 
Note: These exceptions are only relevant for a protocol neutral information model. 
Further exceptions may be necessary for a protocol specific information model. 

Generic exceptions: 

• Internal Error: The server has an internal error. 
• Unable to Comply: The server cannot perform the operation. Use Cases may identify 

specific conditions that will result in this exception. 
• Comm Loss: The server is unable to communicate with an underlying system or 

resource, and such communication is required to complete the operation. 
• Invalid Input: The operation contains an input parameter that is syntactically incorrect 

or identifies an object of the wrong type or is out of range (as defined in the model or 
because of server limitation). 

• Not Implemented: The entire operation is not supported by the server or the operation 
with the specified input parameters is not supported. 

• Access Denied: The client does not have access rights to request the given operation. 

Common exceptions: 

• Entity Not Found: Is thrown to indicate that at least one of the specified entities does 
not exist. 

• Object In Use: The object identified in the operation is currently in use. 
• Capacity Exceeded: The operation will result in resources being created or activated 

beyond the capacity supported by the server. 

Page 21 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

• Not In Valid State: The state of the specified object is such that the server cannot 
perform the operation. In other words, the environment or the application is not in an 
appropriate state for the requested operation. 

• Duplicate: Is thrown if an entity cannot be created because an object with the same 
identifier/name already exists. 

• Additional ONF properties are defined in the «OpenModelOperation» stereotype which 
extents 
( ) by default (required) the «metaclass» Operation: 

 
Figure 5.22: «OpenModelOperation» Stereotype 

• isOperationIdempotent (Boolean) 
Defines if the operation is idempotent (true) or not (false). 

• support 
This property qualifies the support of the operation at the management interface. See 
definition in section 5.9. 

• condition 
This property contains the condition for the condition-related support qualifiers. 

• UML/Papyrus defined operation properties that are not used in ONF: 
• Is leaf 
• Is query 
• Is static 

 

5.6 Operation Parameters 
Parameters define the input and output signals of an operation. 

Note: Operations and their parameters may only be defined in the purpose-specific modules of 
the ONF-wide Information Model; see Figure 4.1. 

5.6.1 Parameter Notation 

The notation is: 

<visibility> <direction> <parameter name> : <parameter type> [<multiplicity>] = <default 
value> 

Page 22 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Note: When no default is relevant or no default is defined, the “=” is not shown 

 
Figure 5.23: Graphical Notation for «Interface» with Operations and Parameters 

 

5.6.2 Parameter Properties 

A parameter has the following properties: 

• Name 
Follows Lower Camel Case (LCC) 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Direction 
Parameters can be defined as: 
- input parameters 
- output parameters 
- in out parameters 

• Type 
Refers to a data type. 
Note that a list of parameters can also be combined in a complex data type. 

• Default Value 
Defines the value that the parameter has in case the value is not provided. If it is 
mandatory to provide a value, the default value is set to NA. 

• Is Ordered 
Defines for a multi-valued parameter that the order of the values is significant. 

• Multiplicity 
Defines the number of values the parameter can simultaneously have. 

• Additional ONF properties are defined in the «OpenModelParameter» stereotype which 
extents 
( ) by default ({required}) the «metaclass» Parameter: 

Page 23 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 5.24: «OpenModelParameter» Stereotype 

• valueRange 
Identifies the allowed values for the parameter. 

• support 
This property qualifies the support of the parameter at the management interface. See 
definition in section 5.9. 

• condition 
This property contains the condition for the condition-related support qualifiers. 

• Other ONF properties: 
• passedByReference 

This property shall only be applied to parameters that have an object class defined as 
their type; i.e., on a case by case basis. 
The property defines if the attribute contains only the reference (name, identifier, 
address) to the referred object instance(s) when being transferred across the interface. 
Otherwise the parameter contains the complete information of the object instance(s) 
when being transferred across the interface. 

 
Figure 5.25: «PassedByReference» Stereotype 

• UML/Papyrus defined parameter properties that are not used in ONF: 
• Is exception 
• Is stream 
• Is unique 
• Visibility 

 

Page 24 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 

5.7 Notifications 
Note: Notifications may only be defined in the purpose-specific modules of the ONF-wide 
Information Model; see Figure 4.1. 

The UML «Signal» artifact is used to define the content of a notification. The information is 
defined in the attributes of the «Signal». 

 

Figure 5.26: Graphical Notation for «Signal» 

 

5.8 Types 
Types are used as type definitions of attributes and parameters. 

Data Types are divided into 3 categories: 
- dataType 
- enumeration 
- primitiveType 

Papyrus already provides the following UML primitive types: 

 
 

5.8.1 Type Notation 

 

 
Figure 5.27: Graphical Notation for «DataType» 

Page 25 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 

 
Figure 5.28: Graphical Notation for «Enumeration» 

 

 
Figure 5.29: Graphical Notation for «PrimitiveType» 

 

5.8.2 Type Properties 

A type has the following properties: 

• Category 
Three categories are used in the model: 
- dataType 
- enumeration 
- primitive 

• Name 
Follows Upper Camel Case (UCC) and is unique across all data type names defined in 
the whole model. 

• Documentation 
Contains a short summary of the usage. The documentation is carried in the “Comments” 
field in Papyrus. 

• Data type attributes (only in dataTypes) 
Follow the definitions made for attributes in section 5.2 with the following exceptions: 
- the isInvariant property can be ignored and is fixed to "true" 
- the notification property can be ignored and is fixed to "NA". 

• Enumeration literals (only in enumerations) 
The name contains only upper case characters where the words are separated by "_". 

• Additional ONF properties 
• Choice 

This stereotype identifies a data type as a choice between different alternatives. 
• Exception 

This stereotype defines a data type used for an operation exception. 

Page 26 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 5.30: Potential Annotations for Data Types 

• UML/Papyrus defined attribute properties that are not used in ONF: 
• Is abstract 
• Is leaf 

5.9 Qualifiers 
This clause defines the qualifiers applicable for model elements specified in this document, e.g., 
the «OpenModelClass» (see section 5.1.2), and the «OpenModelAttribute» (see section 5.2.2). 
The qualifications are M, O, CM, CO, C and ‘SS’. Their meanings are specified in this section. 
This type of qualifier is called Support Qualifier. 

• Definition of M (Mandatory) qualification: 
The capability shall be supported. 

• Definition of O (Optional) qualification: 
The capability may or may not be supported. 

• Definition of CM (Conditional-Mandatory) qualification: 
The capability shall be supported under certain conditions, specifically: 
When qualified as CM, the capability shall have a corresponding constraint defined in the 
specification. If the specified constraint is met then the capability shall be supported. 

• Definition of CO (Conditional-Optional) qualification: 
The capability may be supported under certain conditions, specifically: 
When qualified as CO, the capability shall have a corresponding constraint defined in the 
specification. If the specified constraint is met then the capability may be supported. 

• Definition of C (Conditional) qualification: 
Used for items that have multiple constraints. Each constraint is worded as a condition 
for one kind of support, such as mandatory support, optional support or "no support". All 
constraints must be related to the same kind of support. Specifically: 
Each item with C qualification shall have the corresponding multiple constraints defined 
in the specification. If all specified constraints are met and are related to mandatory, then 
the item shall be supported. If all the specified constraints are met and are related to 
optional, then the item may be supported. If all the specified constraints are met and are 
related to "no support", then the item shall not be supported. 
 
Note: This qualifier should only be used when absolutely necessary, as it is more 
complex to implement. 

Page 27 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

• Definition of SS (SS Conditional) qualification: 
The capability shall be supported by at least one but not all solutions. 

• Definition of ‘-‘ (no support) qualification: 
The capability shall not be supported. 

 

6 UML Profile Definitions 

6.1 Additional ONF Properties Definitions 
Section 5 has already described the additional ONF properties for each UML artifact. All defined 
stereotypes are shown as an overview in Figure 6.1 and Table 6.1 below. 

 

 

 
Figure 6.1: UML Artifact «Stereotypes» 

 

Page 28 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Table 6.1: UML Artifact Properties Defined in Complex «Stereotypes» 

Stereotype Name of 
property Type Allowed values Default value Associated to 

metaclass 

OpenModelClass 

objectCreation 
Notification enumeration 

NO, 
YES, 
NA 

NA 

Class 

objectDeletion 
Notification enumeration 

NO, 
YES, 
NA 

NA 

support enumeration 

MANDATORY 
OPTIONAL 
CONDITIONAL_ 
MANDATORY 
CONDITIONAL_ 
OPTIONAL 
CONDITIONAL 

MANDATORY 

condition string   

OpenModelAttri
bute 

attributeValue 
Change 
Notification 

enumeration 
NO, 
YES, 
NA 

NA 

Property 

isInvariant Boolean true/false false 
valueRange string  NA 

support enumeration 

MANDATORY 
OPTIONAL 
CONDITIONAL_ 
MANDATORY 
CONDITIONAL_ 
OPTIONAL 
CONDITIONAL 

MANDATORY 

condition string   

OpenModelInter
face 

support enumeration 

MANDATORY 
OPTIONAL 
CONDITIONAL_ 
MANDATORY 
CONDITIONAL_ 
OPTIONAL 
CONDITIONAL 

MANDATORY 
Interface 

condition string   

OpenModelOper
ation 

isOperationIdem
potent Boolean true/false false 

Operation support enumeration 

MANDATORY 
OPTIONAL 
CONDITIONAL_ 
MANDATORY 
CONDITIONAL_ 
OPTIONAL 
CONDITIONAL 

MANDATORY 

condition string   

Page 29 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Stereotype Name of 
property Type Allowed values Default value Associated to 

metaclass 

OpenModelPara
meter 

valueRange string  NA 

Parameter support enumeration 

MANDATORY 
OPTIONAL 
CONDITIONAL_ 
MANDATORY 
CONDITIONAL_ 
OPTIONAL 
CONDITIONAL 

MANDATORY 

condition string   
 

6.2 Modeling Lifecycle Definitions 
The UML artifacts (packages, classes, attributes, interfaces, operations, parameters, data types, 
associations and generalizations) can be appended with the following modeling lifecycle states: 

• Example 
This state indicates that the entity is NOT to be used in implementation and is in the 
model simply to assist in the understanding of the model (e.g., a specialization of a 
generalized class where the generalized class is to be used as is and the specialization is 
simply offered to more easily illustrate an application of the generalized class). 

• Experimental 
This state indicates that the entity is at a very early stage of development and will almost 
certainly change. The entity is NOT mature enough to be used in implementation. 

• Faulty 
This state indicates that the entity should not be used in new implementation and that 
attempts should be made to remove it from existing implementation as there is a problem 
with the entity. An update to the model with corrections will be released. 

• LikelyToChange 
This state indicates that although the entity may be mature, work in the area has indicated 
that change will be necessary (e.g., there are new insights in the area or there is now 
perceived benefit to be had from further rationalization). The entity can still be used in 
implementation but with caution. 

• Obsolete 
This state indicates that the entity should not be used in new implementation and that 
attempts should be made to remove it from existing implementation. 

• Preliminary 
This state indicates that the entity is at a relatively early stage of development and is 
likely to change, but is mature enough to be used in implementation. 

 

Page 30 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 6.2: Lifecycle «Stereotypes» 

 

6.3 ONF Open Model Profile Files 

OpenModelProfile_Kepler_v0.0.1.zip  OpenModelProfile_Luna_v0.0.1.zip  
Date: Feb. 20th 2015 

 

7 Recommended Modeling Patterns 
 

7.1 File Naming Conventions 
tba 

 

7.2 Model Structure 

7.2.1 Generic Model Structure 

Figure 7.1 shows a generic Information Model containing a core model and various sub-models 
A, B, C structured by packages: 

Page 31 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

  
Figure 7.1: Core Model and Sub-Models 

Note: 
Figure 7.1 shows only the schematic structure of the core and sub-models as necessary for these 
guidelines. 

Each Model can be optionally organized into multiple modules. Each Model or each of its 
constituent modules is further divided into packages containing associations, diagrams, object 
classes, rules and type definitions. Sub-models may contain in addition packages for (UML-) 
interfaces (and their operations) and notifications. 

 

7.2.2 ONF Specific Model Structure 

The ONF Information Model is structured into a Common Information Model and additional 
Specific Views which are grouped according to the working groups’ structure. The ONF-wide 
Information Model will be defined in different WGs; see Figure 4.1. The IMP Modeling team 
defines the generic functions and the individual WGs will add their specific enhancements to the 
model. 

Each working group view can be further divided into individual UML modules. 
Figure 7.2 presents the current structure of the model. 

Page 32 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 7.2: ONF Model Structure (snapshot) 

Each module is divided into a set of pre-defined packages. Not all packages need to be 
established. Figure 7.3 shows the pre-defined packages. 

 

 
Figure 7.3: Pre-defined Packages in a UML Module 

Additional packages can be added when needed. 

 

7.3 Flexible Attribute Assignment to Object Classes 
Since it is not possible to add attributes once an object instance has been created, it is necessary 
to differentiate case (a) where attributes are assembled before the object instance is created, and 
case (b) where further attributes (functions) are added after the object instance is created. 

For case (a), attributes are grouped in object classes called “Pacs” and are associated to the base 
object class using a conditional composition association (see section 7.3.1 below). 

An example for (a) is a specific LTP instance which has specific Pacs associated, based on the 
functions that this LTP supports. Once the LTP is created, it is no longer possible to add further 
attributes or remove attributes. 

Page 33 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 Object instances are (automatically) created as an assembly of the base object plus a list of 
Pacs (depending on the supported functionality). 

For case (b), attributes are grouped in “normal” object classes and are associated to the base 
object class using a composition association. 

An example for (b) is a specific, already existing LTP instance which will be configured to do 
performance monitoring (PM). In this case an additional PM object instance (created on the basis 
of the corresponding object class (i.e., not Pac)) is separately instantiated and associated to the 
already existing LTP. Note that it is also possible to remove the PM object instance from the 
LTP afterwards without impacting the life cycle of the base LTP instance. 

 Object instances are created on an explicit request and associated to already existing object 
instances (depending on the requested additional functionality). 

 
Figure 7.4: Flexible Attribute Assignment to Object Classes 

 

7.4 Use of Conditional Packages 
Conditional packages are used to enhance (core) object classes / interfaces with additional 
attributes / operations on a conditional basis. The attributes / operations are defined in special 
object classes called packages. 

 

Page 34 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Figure 7.5: Enhancing Object Classes Using Conditional Packages 

Package names follow the same rules as defined for object classes; i.e., UCC. The name ends 
with the suffix "_Pac". 
The role name of the navigable end pointing to the package follows the same rules as defined for 
attributes; i.e., LCC. The name ends with the suffix "_Pac". 

 

7.5 Use of XOR/Choice 
 

7.5.1 Xor Constraint 

7.5.1.1 Description 
“A Constraint represents additional semantic information attached to the constrained elements. A 
constraint is an assertion that indicates a restriction that must be satisfied by a correct design of 
the system. The constrained elements are those elements required to evaluate the constraint 
specification…“, an extract from 9.6.1 Constraint of [3]. 

For a constraint that applies to two elements such as two associations, the constraint shall be 
shown as a dashed line between the elements labeled by the constraint string (in braces). The 
constraint string, in this case, is xor. 

7.5.1.2 Example 
The figure below shows a ServerObjectClass instance that has relation(s) to multiple instances of 
a class from the choice of ClientObjectCLass_Alternative1, ClientObjectClass_Alternative2 or 
ClinetObjectCLass_Alternative3. 

 
Figure 7.6: {xor} Notation 

7.5.1.3 Name style 
It has no name so there is no name style. 

Page 35 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 

7.5.2 «Choice» 

7.5.2.1 Description 
The «Choice» stereotype represents one of a set of classes (when used as an information model 
element) or one of a set of data types (when used as an operations model element). 

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor} 
constraint (see 7.4.1). 

7.5.2.2 Example 
Sometimes the specific kind of class cannot be determined at model specification time. In order 
to support such scenario, the specification is done by listing all possible classes. 

The following diagram lists 3 possible classes. It also shows a «Choice, InformationObjectClass» 
named SubstituteObjectClass. This scenario indicates that only one of the three 
«InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass, 
Alternative3ObjectClass shall be realized. 

The «Choice» stereotype represents one of a set of classes when used as an information model 
element. 

 
Figure 7.7: Information Model Element Example Using «Choice» Notation 

Sometimes the specific kind of data type cannot be determined at model specification time. In 
order to support such scenario, the specification is done by listing all possible data types. 

The following diagram lists 2 possible data types. It also shows a «Choice» named 
ProbableCause. This scenario indicates that only one of the two «DataType» named 
IntegerProbableCause, StringProbableCause shall be realized. 

The «Choice» stereotype represents one of a set of data types when used as an operations model 
element. 

Page 36 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

 
Figure 7.8: Operations Model Element Example Using «Choice» Notation 

Sometimes models distinguish between sink/source/bidirectional termination points. A generic 
class which comprises these three specific classes can be modeled using the «Choice» stereotype. 

 
Figure 7.9: Sink/Source/Bidirectional Termination Points Example Using «Choice» Notation 

7.5.2.3 Name style 
For «Choice» name, use the same style as «OpenModelClass» (see 5.1.2). 

 

7.6 Diagram Guidelines 
 

Page 37 of 38  © Open Networking Foundation 



UML Modeling Guidelines  Version 1.0 

Classes and their relationships shall be presented in class diagrams. 

Interfaces and their operations shall be presented in class diagrams. 

It is recommended to create: 

• An overview class diagram containing all classes related to a specific management area: 
- The class name compartment should contain the location of the class definition (e.g. 
"Qualified Name"). 
The class attributes should show the "Signature" (see section 7.3.45 of [2] for the 
signature definition). 

• A separate inheritance class diagram in case the overview diagram would be overloaded 
when showing the inheritance structure (Inheritance Class Diagram). 

• A class diagram containing the user defined data types (Type Definitions Diagram). 
• Additional class diagrams to show specific parts of the specification in detail. 
• State diagrams for complex state attributes. 
• State transition diagrams for attributes with defined value transitions. 
• Activity diagrams for operations with high complexity. 

 

 

Page 38 of 38  © Open Networking Foundation 


	1 Introduction
	2 References
	3 Abbreviations
	4 Overview
	4.1 Documentation Overview
	4.2 Modeling approach
	4.3 General Requirements

	5 UML Artifact Descriptions
	5.1 Object Classes
	5.1.1 Object Class Notation
	5.1.2 Object Class Properties

	5.2 Attributes in Object Classes
	5.2.1 Attribute Notation
	5.2.2 Attribute Properties

	5.3 Associations
	5.3.1 Association Notation
	5.3.2 Association Properties

	5.4 Interfaces
	5.4.1 «Interface» Notation
	5.4.2 «Interface» Properties

	5.5 Interface Operations
	5.5.1 Operation Notation
	5.5.2 Operation Properties

	5.6 Operation Parameters
	5.6.1 Parameter Notation
	5.6.2 Parameter Properties

	5.7 Notifications
	5.8 Types
	5.8.1 Type Notation
	5.8.2 Type Properties

	5.9 Qualifiers

	6 UML Profile Definitions
	6.1 Additional ONF Properties Definitions
	6.2 Modeling Lifecycle Definitions
	6.3 ONF Open Model Profile Files

	7 Recommended Modeling Patterns
	7.1 File Naming Conventions
	7.2 Model Structure
	7.2.1 Generic Model Structure
	7.2.2 ONF Specific Model Structure

	7.3 Flexible Attribute Assignment to Object Classes
	7.4 Use of Conditional Packages
	7.5 Use of XOR/Choice
	7.5.1 Xor Constraint
	7.5.1.1 Description
	7.5.1.2 Example
	7.5.1.3 Name style

	7.5.2 «Choice»
	7.5.2.1 Description
	7.5.2.2 Example
	7.5.2.3 Name style


	7.6 Diagram Guidelines


