login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283877
Number of non-isomorphic set-systems of weight n.
206
1, 1, 2, 4, 9, 18, 44, 98, 244, 605, 1595, 4273, 12048, 34790, 104480, 322954, 1031556, 3389413, 11464454, 39820812, 141962355, 518663683, 1940341269, 7424565391, 29033121685, 115921101414, 472219204088, 1961177127371, 8298334192288, 35751364047676, 156736154469354
OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements.
LINKS
FORMULA
Euler transform of A300913.
EXAMPLE
Non-isomorphic representatives of the a(4)=9 set-systems are:
((1234)),
((1)(234)), ((3)(123)), ((12)(34)), ((13)(23)),
((1)(2)(12)), ((1)(2)(34)), ((1)(3)(23)),
((1)(2)(3)(4)).
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t), x, x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g, x, x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2017
EXTENSIONS
a(0) = 1 prepended and terms a(11) and beyond from Andrew Howroyd, Sep 01 2019
STATUS
approved