login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091703
Count, setting 5n to zero.
2
0, 1, 2, 3, 4, 0, 6, 7, 8, 9, 0, 11, 12, 13, 14, 0, 16, 17, 18, 19, 0, 21, 22, 23, 24, 0, 26, 27, 28, 29, 0, 31, 32, 33, 34, 0, 36, 37, 38, 39, 0, 41, 42, 43, 44, 0, 46, 47, 48, 49, 0, 51, 52, 53, 54, 0, 56, 57, 58, 59, 0, 61, 62, 63, 64, 0, 66, 67, 68, 69, 0, 71, 72, 73, 74, 0, 76, 77
OFFSET
0,3
FORMULA
a(n) = Product_{k=0..4} Sum_{j=1..n} e^(2*Pi*ijk/5), i=sqrt(-1).
a(n) = cos(4*Pi*n/5 + 2*Pi/5)*(n*cos(2*Pi*n/5 + Pi/5)/5 + n*sqrt(1/5 - 2*sqrt(5)/25)*sin(2*Pi*n/5 + Pi/5) + n*(1/5 - sqrt(5)/5)) + sin(4*Pi*n/5 + 2*Pi/5)*(n*sqrt(2*sqrt(5)/25 + 1/5)*cos(2*Pi*n/5 + Pi/5) + sqrt(5)*n*sin(2*Pi*n/5 + Pi/5)/5 - n*sqrt(2*sqrt(5)/25 + 2/5)) - n*(sqrt(5)/5 + 1/5)*cos(2*Pi*n/5 + Pi/5) - n*sqrt(2/5 - 2*sqrt(5)/25)*sin(2*Pi*n/5 + Pi/5) + 4*n/5.
a(n) = n^5 mod (5*n). - Paul Barry, Apr 13 2005
Multiplicative with a(5^e) = 0, a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005
From R. J. Mathar, Feb 04 2009: (Start)
a(n) = 2*a(n-5) - a(n-10).
G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 4*x^5 + 3*x^6 + 2*x^7 + x^8)/(1-x^5)^2.
a(n) = |A080891(n)|*A001477(n). (End)
From R. J. Mathar, Apr 14 2011: (Start)
a(n) = n*A011558(n).
Dirichlet g.f.: (1-5^(1-s))*zeta(s-1). (End)
Sum_{k=1..n} a(k) ~ (2/5) * n^2. - Amiram Eldar, Nov 20 2022
MATHEMATICA
Table[If[Divisible[n, 5], 0, n], {n, 0, 80}] (* Harvey P. Dale, Apr 26 2018 *)
PROG
(PARI) a(n) = if (n % 5, n, 0); \\ Michel Marcus, Feb 28 2019
(Magma) [(n mod 5 eq 0) select 0 else n: n in [0..80]]; // G. C. Greubel, Feb 28 2019
(Sage) [n if not n % 5==0 else 0 for n in range(80)] # G. C. Greubel, Feb 28 2019
CROSSREFS
KEYWORD
easy,nonn,mult
AUTHOR
Paul Barry, Jan 30 2004
STATUS
approved