login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091684
a(n) = 0 if n is divisible by 3, otherwise a(n) = n.
6
0, 1, 2, 0, 4, 5, 0, 7, 8, 0, 10, 11, 0, 13, 14, 0, 16, 17, 0, 19, 20, 0, 22, 23, 0, 25, 26, 0, 28, 29, 0, 31, 32, 0, 34, 35, 0, 37, 38, 0, 40, 41, 0, 43, 44, 0, 46, 47, 0, 49, 50, 0, 52, 53, 0, 55, 56, 0, 58, 59, 0, 61, 62, 0, 64, 65, 0, 67, 68, 0, 70, 71, 0, 73, 74, 0, 76, 77, 0, 79, 80
OFFSET
0,3
COMMENTS
Multiplicative with a(3^e) = 0, a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005
Completely multiplicative with a(3) = 0, a(p) = p otherwise. - Charles R Greathouse IV, Feb 21 2011
FORMULA
a(n) = Product_{k=0..2} Sum_{j=1..n} w(3)^(k*j), w(3)=e^(2*Pi*i/3), i=sqrt(-1).
a(n) = 2*n/3 - n*sin(2*Pi*n/3 + Pi/3)/sqrt(3) - n*cos(2*Pi*n/3 + Pi/3)/3.
G.f.: x*(x^4 + 2*x^3 + 2*x + 1)/((x^2 + x + 1)^2*(x - 1)^2). - Ralf Stephan, Jan 29 2004
a(n) = n^3 mod 3n. - Paul Barry, Apr 13 2005
Dirichlet g.f.: zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011
a(3*n) = 0, a(3*n + 1) = 3*n + 1, a(3*n + 2) = 3*n + 2. a(-n) = -a(n). - Michael Somos, Mar 19 2011
a(n) = n * sign(n mod 3). - Wesley Ivan Hurt, Sep 24 2017
EXAMPLE
x + 2*x^2 + 4*x^4 + 5*x^5 + 7*x^7 + 8*x^8 + 10*x^10 + 11*x^11 + 13*x^13 + ...
MATHEMATICA
f[n_] := If[ Mod[n, 3] == 0, 0, n] (* Or *) n (Fibonacci[n] - 2 Floor[ Fibonacci[n]/2]); Array[f, 78, 0] (* Robert G. Wilson v *)
{#, 0, #}[[Mod[#-1, 3, 1]]]&/@Range[0, 99] (* Federico Provvedi, Jun 15 2021 *)
PROG
(PARI) a(n)=if(n%3, n) \\ Charles R Greathouse IV, Feb 21 2011
(PARI) {a(n) = n * sign( n%3)} /* Michael Somos, Mar 19 2011 */
(Magma) &cat[[0, 3*n+1, 3*n+2]: n in [0..26]]; // Bruno Berselli, Aug 29 2011
CROSSREFS
Sequence in context: A266587 A070692 A162397 * A100050 A164616 A258100
KEYWORD
nonn,mult,easy
AUTHOR
Paul Barry, Jan 28 2004
STATUS
approved