login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052111
Number of self-complementary 2-multigraphs with loops on n nodes.
2
1, 2, 5, 24, 120, 956, 13214, 275848, 10613479, 601955190, 63788179593, 9985272721908, 2906903866536978, 1268802939666164781, 1023198355173637429689, 1258181815243248217067175, 2834890911778762731361375215, 9900896274205100008273760895560
OFFSET
1,2
COMMENTS
A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
LINKS
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2+1))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
(Python)
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A052111(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2) if not (r&1 and s&1))+sum(((q>>1)|1)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1)), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
CROSSREFS
Sequence in context: A374926 A364229 A374621 * A176473 A185056 A346204
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jan 21 2000
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Sep 16 2018
STATUS
approved