login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052107
Number of self-complementary 3-multigraphs on n nodes.
1
1, 0, 0, 4, 16, 0, 0, 2080, 32896, 0, 0, 178990080, 11453771776, 0, 0, 3002404080455680, 768614611824951296, 0, 0, 10316167090130469587779584, 10563755026498136326181748736, 0, 0, 7561830376433501721102295492903043072, 30973257220603971305905396442627825467392
OFFSET
1,4
REFERENCES
V. Jovovic, On the number of m-place relations (in Russian), Logiko-algebraicheskie konstruktsii, Tver, 1992, 59-66.
J. Xu, Ch. R. Wang, J. F. Wang, The theory of self-complementary k-multigraphs (in Chinese), Pure Appl. Math. [Chuncui Shuxue yu Yingyong Shuxue] 10 (1994), Special Issue, 18-22.
LINKS
D. Wille, Enumeration of self-complementary structures, J. Comb. Theory B 25 (1978) 143-150.
MATHEMATICA
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_List] := 4 Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i - 1}], {i, 2, Length[v]}] + 2 Total[v];
a[n_] := Module[{s = 0}, If[Mod[n, 4] < 2, Do[s += permcount[4*p]* 4^edges[p]*If[OddQ[n], n*4^Length[p], 1], {p, IntegerPartitions[ Quotient[n, 4]]}]]; s/n!];
Array[a, 25] (* Jean-François Alcover, Sep 12 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {4*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, 2*v[i])}
a(n) = {my(s=0); if(n%4<2, forpart(p=n\4, s+=permcount(4*Vec(p))*4^edges(p)*if(n%2, n*4^#p, 1))); s/n!} \\ Andrew Howroyd, Sep 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jan 20 2000
EXTENSIONS
Terms a(24) and beyond from Andrew Howroyd, Sep 17 2018
STATUS
approved