login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045575
Nonnegative numbers of the form x^y - y^x, for x,y > 1.
5
0, 1, 7, 17, 28, 79, 118, 192, 399, 431, 513, 924, 1844, 1927, 2800, 3952, 6049, 7849, 8023, 13983, 16188, 18954, 32543, 58049, 61318, 61440, 65280, 130783, 162287, 175816, 255583, 261820, 357857, 523927, 529713, 1038576, 1048176
OFFSET
1,3
COMMENTS
Pillai proved that there are ~ 0.5 * (log x)^2/(log log x)^2 terms of this sequence up to x. - Charles R Greathouse IV, Jul 20 2017
Conjecture: For d > 11, 10^d - d^10 is the largest (base-ten) d-digit term. - Hans Havermann, Jun 12 2023
REFERENCES
S. S. Pillai, On the indeterminate equation x^y - y^x = a, Journal Annamalai University 1, Nr. 1, (1932), pp. 59-61. Cited in Waldschmidt 2009.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Michel Waldschmidt, Perfect Powers: Pillai's works and their developments, arXiv:0908.4031 [math.NT], 2009.
MAPLE
N:= 10^8: # to get all terms <= N
A:= (0, 1):
for x from 2 while x^(x+1) - (x+1)^x <= N do
for y from x+1 do
z:= x^y - y^x;
if z > N then break
elif z > 0 then A:=A, z;
fi
od od:
{A}; # Robert Israel, Aug 20 2014
MATHEMATICA
Union[Flatten[Table[If[a^b-b^a>-1&&a^b-b^a<10^6*2, a^b-b^a], {a, 1, 123}, {b, a, 144}]]] (* Vladimir Joseph Stephan Orlovsky, Apr 26 2008 *)
nn=10^50; n=1; Union[Reap[While[n++; k=n+1; num=Abs[n^k-k^n]; num<nn, Sow[num]; While[k++; num=n^k-k^n; num<nn, Sow[num]]]][[2, 1]]]
PROG
(PARI) list(lim)=my(v=List([0]), t); for(x=2, max(logint(lim\=1, 2)+1, 6), for(y=2, x-1, t=abs(x^y-y^x); if(t<=lim&&t, listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Jul 20 2017
CROSSREFS
Cf. A076980.
Sequence in context: A160912 A017353 A147089 * A029532 A217926 A250294
KEYWORD
easy,nonn
STATUS
approved