login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024675
Average of two consecutive odd primes.
99
4, 6, 9, 12, 15, 18, 21, 26, 30, 34, 39, 42, 45, 50, 56, 60, 64, 69, 72, 76, 81, 86, 93, 99, 102, 105, 108, 111, 120, 129, 134, 138, 144, 150, 154, 160, 165, 170, 176, 180, 186, 192, 195, 198, 205, 217, 225, 228, 231, 236, 240, 246, 254, 260, 266, 270, 274, 279, 282, 288, 300
OFFSET
1,1
COMMENTS
Sometimes called interprimes.
Where local maxima of A072681 occur: A072681(a(n))=A074927(n+1). - Reinhard Zumkeller, Mar 04 2009
Never prime, for that would contradict the definition. - Jon Perry, Dec 05 2012
A subset of A145025, obtained from that sequence by omitting the primes (which are barycenter of their neighboring primes). - M. F. Hasler, Jun 01 2013
Conjecture: Product_{k=1..n} a(k)/A028334(k+1) is an integer for every natural n. Cf. A352743. - Thomas Ordowski, Mar 31 2022
LINKS
Eric Weisstein's World of Mathematics, Interprime
FORMULA
a(n) = (prime(n+1)+prime(n+2))/2 = A001043(n+1)/2. - Omar E. Pol, Feb 02 2012
Conjecture: a(n) = ceiling(sqrt(prime(n+1)*prime(n+2))). - Thomas Ordowski, Mar 22 2013 [This requires gaps to be smaller than approximately sqrt(8p) and hence requires a result on prime gaps slightly stronger than that provided by the Riemann hypothesis. - Charles R Greathouse IV, Jul 13 2022]
Equals A145025 \ A006562 = A145025 \ A000040. - M. F. Hasler, Jun 01 2013
MAPLE
seq( ( (ithprime(x)+ithprime(x+1))/2 ), x=2..40);
MATHEMATICA
Plus @@@ Partition[Table[Prime[n], {n, 2, 100}], 2, 1]/2
ListConvolve[{1, 1}/2, Prime /@ Range[2, 70]] (* Jean-François Alcover, Jun 25 2013 *)
Mean/@Partition[Prime[Range[2, 70]], 2, 1] (* Harvey P. Dale, Jul 28 2020 *)
PROG
(PARI) for(X=2, 50, print((prime(X)+prime(X+1))/2)) \\ Hauke Worpel (thebigh(AT)outgun.com), May 08 2008
(PARI) first(n)=my(v=primes(n+2)); vector(n, i, v[i+1]+v[i+2])/2 \\ Charles R Greathouse IV, Jun 25 2013
(Python)
from sympy import prime
def a(n): return (prime(n + 1) + prime(n + 2)) // 2
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jul 11 2017
CROSSREFS
Cf. A072568, A072569. Bisections give A058296, A079424.
Cf. A373699 (partial sums).
Sequence in context: A171845 A157124 A162735 * A274135 A163656 A134678
KEYWORD
nonn,nice,easy
STATUS
approved