login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022544
Numbers that are not the sum of 2 squares.
59
3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 112, 114, 115, 118, 119, 120, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 147, 150, 151, 152, 154, 155, 156, 158, 159, 161, 163, 165, 166, 167, 168, 171, 172, 174, 175, 176, 177, 179, 182, 183, 184, 186, 187, 188, 189, 190, 191, 192, 195, 198, 199
OFFSET
1,1
COMMENTS
Conjecture: if k is not the sum of 2 squares then sigma(k) == 0 (mod 4) (the converse does not hold, as demonstrated by the entries in A025303). - Benoit Cloitre, May 19 2002
Numbers having some prime factor p == 3 (mod 4) to an odd power. sigma(n) == 0 (mod 4) because of this prime factor. Every k == 3 (mod 4) is a term. First differences are always 1, 2, 3 or 4, each occurring infinitely often. - David W. Wilson, Mar 09 2005
Complement of A000415 in the nonsquare positive integers A000037. - Max Alekseyev, Jan 21 2010
Integers with an equal number of 4k+1 and 4k+3 divisors. - Ant King, Oct 05 2010
A000161(a(n)) = 0; A070176(a(n)) > 0; A046712 is a subsequence. - Reinhard Zumkeller, Feb 04 2012, Aug 16 2011
There are arbitrarily long runs of consecutive terms. Record runs start at 3, 6, 21, 75, ... (A260157). - Ivan Neretin, Nov 09 2015
From Klaus Purath, Sep 04 2023: (Start)
There are no squares in this sequence.
There are also no numbers of the form n^2 + 1 (A002522) or n^2 + 4 (A087475).
Every term a(n) raised to an odd power belongs to the sequence just as every product of an odd number of terms. This is also true for all integer sequences represented by the indefinite binary quadratic forms a(n)*x^2 - y^2. These sequences also do not contain squares. (End)
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
LINKS
FORMULA
Limit_{n->oo} a(n)/n = 1.
MATHEMATICA
Select[Range[199], Length[PowersRepresentations[ #, 2, 2]] == 0 &] (* Ant King, Oct 05 2010 *)
Select[Range[200], SquaresR[2, #]==0&] (* Harvey P. Dale, Apr 21 2012 *)
PROG
(PARI) for(n=0, 200, if(sum(i=0, n, sum(j=0, i, if(i^2+j^2-n, 0, 1)))==0, print1((n), ", ")))
(PARI) is(n)=if(n%4==3, return(1)); my(f=factor(n)); for(i=1, #f~, if(f[i, 1]%4==3 && f[i, 2]%2, return(1))); 0 \\ Charles R Greathouse IV, Sep 01 2015
(Haskell)
import Data.List (elemIndices)
a022544 n = a022544_list !! (n-1)
a022544_list = elemIndices 0 a000161_list
-- Reinhard Zumkeller, Aug 16 2011
(Magma) [n: n in [0..160] | NormEquation(1, n) eq false]; // Vincenzo Librandi, Jan 15 2017
(Python)
def aupto(lim):
squares = [k*k for k in range(int(lim**.5)+2) if k*k <= lim]
sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
return sorted(set(range(lim+1)) - sum2sqs)
print(aupto(199)) # Michael S. Branicky, Mar 06 2021
(Python)
from itertools import count, islice
from sympy import factorint
def A022544_gen(): # generator of terms
return filter(lambda n:any(p & 3 == 3 and e & 1 for p, e in factorint(n).items()), count(0))
A022544_list = list(islice(A022544_gen(), 30)) # Chai Wah Wu, Jun 28 2022
CROSSREFS
Complement of A001481; subsequence of A111909.
Sequence in context: A101184 A087643 A248150 * A194366 A091067 A269177
KEYWORD
nonn,nice
EXTENSIONS
More terms from Benoit Cloitre, May 19 2002
STATUS
approved