login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006456
Number of compositions (ordered partitions) of n into squares.
(Formerly M0528)
57
1, 1, 1, 1, 2, 3, 4, 5, 7, 11, 16, 22, 30, 43, 62, 88, 124, 175, 249, 354, 502, 710, 1006, 1427, 2024, 2870, 4068, 5767, 8176, 11593, 16436, 23301, 33033, 46832, 66398, 94137, 133462, 189211, 268252, 380315, 539192, 764433, 1083764, 1536498, 2178364
OFFSET
0,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..5000 (terms 0..500 from T. D. Noe)
Jan Bohman, Carl-Erik Fröberg, Hans Riesel, Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301.
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. (Annotated scanned copy)
N. Robbins, On compositions whose parts are polygonal numbers, Annales Univ. Sci. Budapest., Sect. Comp. 43 (2014) 239-243. See p. 242.
FORMULA
a(n) = 1, if n = 0; a(n)=Sum(1 <= k^2 <= n, a(n-k^2)), if n > 0. - David W. Wilson
G.f.: 1/(1-x-x^4-x^9-....) - Jon Perry, Jul 04 2004
a(n) ~ c * d^n, where d is the root of the equation EllipticTheta(3, 0, 1/d) = 3, d = 1.41774254618138831428829091099000662953179532057717725688..., c = 0.46542113389379672452973940263069782869244877335179331541... - Vaclav Kotesovec, May 01 2014, updated Jan 05 2017
G.f.: 2/(3 - theta_3(q)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 08 2018
MATHEMATICA
a[n_]:=a[n]=If[n==0, 1, Sum[a[n - k], {k, Select[Range[n], IntegerQ[Sqrt[#]] &]}]]; Table[a[n], {n, 0, 100}] (* Indranil Ghosh, Jul 28 2017, after David W. Wilson's formula *)
PROG
(PARI)
N=66; x='x+O('x^N);
Vec( 1/( 1 - sum(k=1, 1+sqrtint(N), x^(k^2) ) ) )
/* Joerg Arndt, Sep 30 2012 */
(Python)
from gmpy2 import is_square
class Memoize:
def __init__(self, func):
self.func=func
self.cache={}
def __call__(self, arg):
if arg not in self.cache:
self.cache[arg] = self.func(arg)
return self.cache[arg]
@Memoize
def a(n): return 1 if n==0 else sum([a(n - k) for k in range(1, n + 1) if is_square(k)])
print([a(n) for n in range(101)]) # Indranil Ghosh, Jul 28 2017, after David W. Wilson's formula
CROSSREFS
Cf. A280542.
Row sums of A337165.
Sequence in context: A046420 A108318 A358876 * A018134 A245823 A143284
KEYWORD
nonn,easy
EXTENSIONS
Name corrected by Bob Selcoe, Feb 12 2014
STATUS
approved