login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004104
Number of self-dual signed graphs with n nodes. Also number of self-complementary 2-multigraphs on n nodes.
(Formerly M1649)
7
1, 1, 2, 6, 20, 86, 662, 8120, 171526, 5909259, 348089533, 33883250874, 5476590066777, 1490141905609371, 666003784522738152, 509204473666338077658, 636051958071749028811326, 1375164117171886868027357906, 4844133410739656724629165903483, 29777568550007746192195431057341474
OFFSET
1,3
COMMENTS
A 2-multigraph is similar to an ordinary graph except there are 0, 1 or 2 edges between any two nodes (self-loops are not allowed).
Of a(1) through a(22) only a(3) = 2 is prime. - Jonathan Vos Post, Feb 19 2011
REFERENCES
F. Harary and R. W. Robinson, Exposition of the enumeration of point-line-signed graphs, pp. 19 - 33 of Proc. Second Caribbean Conference Combinatorics and Computing (Bridgetown, 1977). Ed. R. C. Read and C. C. Cadogan. University of the West Indies, Cave Hill Campus, Barbados, 1977. vii+223 pp.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..22 from R. W. Robinson)
Edward A. Bender and E. Rodney Canfield, Enumeration of connected invariant graphs, Journal of Combinatorial Theory, Series B 34.3 (1983): 268-278. See p. 273.
Frank Harary, Edgar M. Palmer, Robert W. Robinson, and Allen J. Schwenk, Enumeration of graphs with signed points and lines, J. Graph Theory 1 (1977), no. 4, 295-308.
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[Sum[If[Mod[v[[i]]*v[[j]], 2] == 0, GCD[v[[i]], v[[j]]], 0], {j, 1, i - 1}], {i, 2, Length[v]}] + Sum[If[Mod[v[[i]], 2] == 0, Quotient[v[[i]], 4]*2, 0], {i, 1, Length[v]}];
a[n_] := Module[{s = 0}, Do[s += permcount[p]*3^edges[p], {p, IntegerPartitions[n]}]; s/n!];
Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 27 2019, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, v[i]\4*2))}
a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018
(Python)
from itertools import combinations
from math import prod, gcd, factorial
from fractions import Fraction
from sympy.utilities.iterables import partitions
def A004104(n): return int(sum(Fraction(3**(sum(p[r]*p[s]*gcd(r, s) for r, s in combinations(p.keys(), 2) if not (r&1 and s&1))+sum(((q>>1)&-2)*r+(q*r*(r-1)>>1) for q, r in p.items() if q&1^1)), prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 09 2024
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Jan 19 2000
a(18)-a(20) added by Andrew Howroyd, Sep 16 2018
STATUS
approved