login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003631
Primes congruent to 2 or 3 modulo 5.
(Formerly M0832)
44
2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 433, 443, 457, 463, 467, 487, 503, 523, 547, 557, 563, 577
OFFSET
1,1
COMMENTS
For n>1, sequence gives primes ending in 3 or 7. - Lekraj Beedassy, Oct 27 2003
Inert rational primes in Q(sqrt 5), or, p is not a square mod 5. [See e.g., Hasse, Legendre symbol (5|p) = -1, Hardy and Wright, Theorem 257 (2), p. 222, and Dodd Appendix B, pp. 128 - 150, primes p < 32771 with (p,0). - Wolfdieter Lang, Jun 16 2021]
Primes for which the period of the Fibonacci sequence mod p divides 2p+2.
Let F(n) be the n-th Fibonacci number for n=1,2,3,... (A000045). F(n) mod p (a prime) generates a periodic sequence. This sequence may be generated as follows: F(p-1)* F(p) mod p = p-1. E.g., p=7: F(6) * F(7) mod 7 = 8 * 13 mod 7 = 6 = p-1. - Louis Mello (Mellols(AT)aol.com), Feb 09 2001
These are also the primes p that divide Fibonacci(p+1). - Jud McCranie
Also primes p such that p divides F(2p+1)-1; such that p divides F(2p+3)-1; such that p divides F(3p+1)-1. - Benoit Cloitre, Sep 05 2003
Primes p such that the polynomial x^2-x-1 mod p has no zeros; i.e., x^2-x-1 is irreducible over the integers mod p. - T. D. Noe, May 02 2005
Primes p such that (1-x^5)/(1-x) is irreducible over GF(p). - Joerg Arndt, Aug 10 2011
Primes p such that p does not divide Sum_{i=1..p-1} Fibonacci(i)^2 = A001654(p-1). - Arkadiusz Wesolowski, Jul 23 2012
The prime 2 and primes p such that p^2 mod 10 = 9. - Richard R. Forberg, Aug 28 2013
Primes p such that 5 divides sigma(p^3), cf. A274397. - M. F. Hasler, Jul 10 2016
REFERENCES
F. W. Dodd, Number Theory in the Quadratic Field with Golden Section Unit, Polygon Publishing House, Passaic, NJ 07055, 1983, Appendix B, pp. 128 - 150.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Chap. X, p. 150, Chap. XV, Theorem 257 (2), p. 222, Oxford University Press, Fifth edition.
H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 498.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
N. N. Vorob'ev, Fibonacci Numbers, Pergamon Press, 1961.
LINKS
Henri Darmon, Andrew Wiles’s Marvelous Proof, Notices of the AMS (2017), Volume 64, Number 3 pp. 209-216. See p. 211.
FORMULA
a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 19 2017
MATHEMATICA
Select[ Prime[Range[106]], MemberQ[{2, 3}, Mod[#, 5]] &] (* Robert G. Wilson v, Sep 12 2011 *)
a[ n_] := If[ n < 1, 0, Module[{c = 0, m = 0}, While[ c < n, If[ PrimeQ[++m] && KroneckerSymbol[5, m] == -1, c++]]; m]]; (* Michael Somos, Nov 24 2018 *)
PROG
(Haskell)
a003631 n = a003631_list !! (n-1)
a003631_list = filter ((== 1) . a010051') a047221_list
-- Reinhard Zumkeller, Nov 27 2012, Jul 19 2011
(PARI) list(lim)=select(n->n%5==2||n%5==3, primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
(PARI) {a(n) = if( n < 1, 0, my(c , m); while( c < n, if( isprime(m++) && kronecker(5, m) == -1, c++)); m)}; /* Michael Somos, Aug 14 2012 */
(Magma) [ p: p in PrimesUpTo(1000) | p mod 5 in {2, 3} ]; // Vincenzo Librandi, Aug 07 2012
CROSSREFS
Primes in A047221.
Cf. A000040.
Cf. A274397.
Sequence in context: A271666 A106306 A069104 * A175443 A032449 A278697
KEYWORD
nonn,easy,nice
STATUS
approved