自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

weixin_55010563的博客

希望可以帮到你

  • 博客(2721)
  • 资源 (57)
  • 收藏
  • 关注

原创 HTTPS 的通信加解密过程,证书为什么更安全?

证书中包含了服务器的公钥和其他身份信息。6.客户端和服务器使用对称密钥进行加密通信:客户端和服务器通过协商好的对称密钥进行加密和解密,这意味着数据传输过程中使用相同的密钥进行加密和解密,保证了数据传输的机密性和完整性。证书的使用能够确保服务器的身份和通信的安全性,增加了整个通信过程的安全性和可信度。4.客户端生成密钥:如果证书有效,客户端会生成一个用于对称加密通信的随机密钥,并使用服务器的公钥进行加密。5.服务器解密消息:服务器收到客户端发来的加密密钥后,使用自己的私钥对其进行解密,获取对称加密的密钥。

2023-12-13 14:02:52 543

原创 一步一步学习使用FireMonkey动画(5) 动画图解11种动画插值类型

本文介绍了FireMonkey动画中的11种插值类型及其应用场景。插值是在起点和终点之间计算中间值的方法,决定了动画的缓动效果。文中详细描述了线性、二次方、三次方、四次方、五次方、正弦曲线、指数、弹性、弹跳、回拉等插值类型的特点和数学曲线,并提供了每种类型的适用场景建议。例如线性插值适合进度条,弹性插值适合按钮反馈,弹跳插值适合欢乐场景。通过理解不同插值类型的特点,开发者可以创建更具表现力和自然感的动画效果。

2025-08-25 08:06:26 233

原创 Node.js 主流ORM框架动态分表方案大盘点

Node.js主流ORM框架分表方案对比:针对大数据高并发场景,本文对比了TypeORM、DrizzleORM、Prisma和Vona等主流ORM的分表实现方案。TypeORM通过动态修改metadata实现;DrizzleORM采用工厂模式预定义分表;Prisma目前仅支持原生SQL查询;Vona提供自动/手动两种模式,自动模式通过上下文动态计算表名。各方案均支持按用户ID取模的常见分表规则,但实现方式和成熟度存在差异,开发者可根据项目需求选择合适方案。

2025-08-25 08:05:50 202

原创 XXL-JOB v3.2.0 | 分布式任务调度平台

XXL-JOB v3.2.0发布,主要更新包括:AI任务优化,支持模型动态配置切换;安全升级,登录认证重构为SHA256加密;新增Python3/2多版本支持;系统日志和异常处理优化;修复SSRF漏洞等安全问题;项目结构和API可维护性提升。该版本还改进了任务扫描、分片广播等功能,并升级了多项依赖组件。XXL-JOB是一个轻量级分布式任务调度平台,具有动态扩容、故障转移、多策略触发等特性,支持多种任务类型和集群部署。

2025-08-25 08:05:11 203

原创 Token续期的5种方案

本文探讨了Token续期的5种主流方案及其应用场景。首先分析了单Token方案的安全缺陷及黑名单优化方法,然后介绍了双Token方案的三验证机制和分布式锁并发控制。针对高并发系统,提出了自动续期方案,包括拦截器+滑动窗口、Redis缓存续期和Gateway全局过滤器实现。文章还探讨了分布式环境的特殊挑战,如多设备会话管理和跨服务验证。最后对比了五大方案的安全性、用户体验和性能影响,并给出选型建议和最佳实践,包括安全时效控制、敏感操作二次认证和性能优化策略。

2025-08-25 08:04:33 418

原创 一步一步学习使用FireMonkey动画(6) 用实例理解动画的运行状态

本文介绍了FireMonkey动画中控制动画运行状态的关键属性和方法,通过一个旋转小球的实例演示了动画状态监控。文章详细讲解了Duration、Enabled、Running等核心属性,以及Start、Stop、Pause等控制方法的使用场景。示例中通过TMemo和TProgressBar实时显示动画进度,并测试了启动、暂停、启用/禁用、停止等不同操作对动画状态的影响。特别指出暂停不会触发OnFinish事件,而停止和禁用都会重置动画时间并触发完成事件。文中还比较了Stop和StopAt方法的区别,为开发者

2025-08-25 08:03:54 434

原创 关于并查集

【并查集简介】并查集是一种高效处理集合合并与查询的数据结构,支持快速判断元素是否同属一个集合和合并两个集合。其核心思想是为每个集合选定代表元,通过路径压缩优化(在查找时将节点直接指向代表元)使操作均摊复杂度接近常数级(O(α(n)))。典型应用如洛谷P3367模板题,通过维护父节点数组实现合并与查询功能,适用于大规模数据(如N≤2×10^5)。代码实现包含初始化、查找(含路径压缩)、合并及查询操作,是算法竞赛中处理连通性问题的利器。

2025-08-25 08:03:06 235

原创 LLM 指标 | PPL vs. BLEU vs. ROUGE-L vs. METEOR vs. CIDEr

本文介绍了五种评估大语言模型(LLM)性能的核心指标:困惑度(PPL)衡量模型预测不确定性;BLEU基于n-gram匹配评估翻译质量;ROUGE-L通过最长公共子串计算文本相似度;METEOR引入语义对齐和语序惩罚改进BLEU;CIDEr则采用TF-IDF加权评估图像描述任务。这些指标各有侧重,PPL侧重模型内部一致性,其余指标侧重生成文本与参考文本的匹配程度,适用于不同NLP任务评估。

2025-08-25 08:01:50 150

原创 redis持久化详解

Redis持久化机制详解 Redis提供RDB和AOF两种持久化方式: RDB(快照): 优点:快速备份、启动快、节省空间 缺点:可能丢失数据、大数据量时可能卡顿 工作原理:周期性生成二进制快照文件 AOF(日志追加): 优点:数据安全性高、可读性好 缺点:文件较大、恢复较慢 工作原理:记录所有写操作命令,支持三种同步策略 混合持久化(4.0+): 结合RDB和AOF优势 在AOF重写时先写入RDB格式数据,再追加AOF命令 提供更快的恢复速度和更好的数据完整性 配置建议:可根据数据安全性和性能需求选择合适

2025-08-25 08:01:12 418

原创 【译】GPT-5 现已在 Visual Studio 中可用

OpenAI最新模型GPT-5现已在Visual Studio的GitHub Copilot中逐步推出,为开发者提供更快的响应速度和更强的代码理解能力。该模型在复杂编码任务、代码质量和解释清晰度方面均有显著提升,适用于构建功能或理解陌生代码库。GPT-5已向所有付费Copilot套餐开放,用户可在Agent和Ask模式中使用。GitHub将逐步停用多个旧模型以推进GPT-5的广泛应用。

2025-08-23 08:06:34 134

原创 WPF中使用 using prism.region 报错

摘要(149字) Prism 9.0+版本中,Prism.Regions命名空间已迁移至Prism.Navigation.Regions,导致WPF项目编译报错。解决方案:替换using声明为Prism.Navigation.Regions,并通过NuGet安装Prism.Wpf和Prism.Navigation包。官方建议所有Prism相关包(如Core/Wpf/Navigation)版本严格一致(如全用9.0.0),避免兼容性问题。混合版本可能导致API不匹配或运行时异常。详细变更参考GitHub文档。

2025-08-23 08:05:56 340

原创 从0.99到1实现一个Windows上的虚拟hid键盘设备

本文介绍了如何基于微软HID迷你驱动示例代码改造实现一个Windows虚拟HID键盘设备。主要步骤包括:1)修改HID报告描述符添加键盘功能;2)调整IOCTL_HID_READ_REPORT请求处理函数以模拟按键状态;3)通过客户端程序控制按键行为。改造后的设备可通过Alt+字母键组合触发虚拟按键,使用Alt+F1释放按键。该方案适用于虚拟机、远程控制等场景,无需进入测试模式即可安装UMDF驱动,为开发虚拟输入设备提供了实用参考。

2025-08-23 08:05:20 784

原创 千亿消息“过眼云烟”?Kafka把硬盘当内存用的性能魔法,全靠这一手!

Kafka通过巧妙设计实现千亿级消息处理:采用主题-分区-分段的三层结构,将消息分散存储并支持并行处理;利用批处理、稀疏索引和相对偏移量优化存储效率;通过PageCache和顺序I/O提升吞吐量;提供日志删除和压缩两种清理策略。其核心创新在于将硬盘顺序读写性能发挥到极致,同时通过内存缓存加速访问,使系统既能处理海量数据又保持高性能。

2025-08-23 08:03:26 286

原创 大/小模型在视频分析领域中的联合应用

计算机视觉领域大小模型联合应用已成为视频分析的主流趋势。小模型(如YOLO、MobileNet)在实时性、部署便捷性方面优势明显,但在复杂场景下存在泛化能力弱、语义理解不足等瓶颈。大模型(如CLIP、Qwen-VL)具备强大的多模态理解和推理能力,但计算成本高、延迟大。目前业界采用"小模型实时检测+大模型精细分析"的协同架构,通过级联推理、知识蒸馏等方式实现优势互补。典型案例显示,这种联合应用可使异常检测准确率提升至94%,同时保持算力成本可控。

2025-08-23 08:01:50 399

原创 Java Spring Boot 修改yml配置&加载顺序规则

SpringBoot配置加载顺序规则:1)properties文件优先级高于yml/yaml;2)加载顺序从Jar包内到外,/config目录优先级最高。最佳实践推荐:1)使用配置文件(推荐放在/config目录);2)支持Shell/Batch脚本启动;3)环境变量配置。修改配置可通过直接更新yml文件、命令行参数或环境变量实现,其中配置文件方式最清晰易维护。

2025-08-23 08:01:11 327

原创 一步一步学习使用FireMonkey动画(1) 使用动画组件为窗体添加动态效果

摘要:本文介绍了使用FireMonkey框架创建动画的三种方法。首先演示了传统的TTimer组件实现图片菱形路径动画,需要手动编写移动控制代码。其次展示了TFloatAnimation组件如何通过设置属性实现更流畅的X/Y轴复合动画效果。最后讲解了TPathAnimation组件,通过定义闭合路径让图片自动沿路径移动。三种方法对比显示,FireMonkey专用动画组件能简化开发流程,实现更专业的动画效果。教程还提供了完整的代码示例和属性设置说明。

2025-08-23 08:00:33 773

原创 张正友相机标定法确定相机内参

本文介绍了基于张正友标定法的相机内参标定方法。该方法通过拍摄多张不同姿态的棋盘图像(5×6内角点,25mm方格边长),利用OpenCV的findChessboardCorners检测角点并进行亚像素精修。通过计算单应矩阵、线性近似相机内参,再经非线性优化最小化重投影误差(平均0.0899像素),最终获得相机内参矩阵、畸变系数及外参。标定结果保存为NPZ文件,包含内参矩阵(fx,fy,cx,cy)、畸变系数(k1,k2,p1,p2,k3等)和每张图的外参(旋转和平移向量)。实验表明该方法标定精度高(RMS约0

2025-08-21 08:06:06 477

原创 使用FastApi构建python后端,并部署在免费服务器Render/Replit上

本文介绍了如何使用FastAPI构建Python后端应用并部署到免费服务器Render/Replit上。教程包含四个API实现:获取服务器时间、带参数查询城市温度、上传图片获取尺寸信息以及模拟登录功能。文章详细展示了FastAPI的基本使用方式,包括路由定义、参数处理、文件上传和表单验证等核心功能。通过不到100行代码就实现了完整的RESTful接口,并支持自动生成交互式文档。最后指导了如何将代码部署到Replit平台,并提供了Postman测试方法。整个教程适合零基础开发者,约需30-60分钟即可完成实践

2025-08-21 08:04:50 338

原创 回顾一下WPF原生实现命令

本文介绍了WPF中原生命令的实现方式,重点分析了ICommand接口和RelayCommand的实现原理。文章首先解释了WPF命令机制的核心作用,包括解耦UI与业务逻辑、统一命令规范等功能。详细解析了RelayCommand类的实现,包括_execute和_canExecute委托的用法,以及CommandManager在命令系统中的关键作用。文章还探讨了路由事件中的隧道与冒泡机制,并通过具体示例展示了如何通过CanExecute控制命令可用性。最后,通过一个完整的SayHello命令实现案例,演示了从属性

2025-08-21 08:04:13 537

原创 JavaScript 多人协作的“修罗场”:如何优雅地规避函数重名问题?

其本质在于 JavaScript 的全局作用域是共享的 - 在浏览器中它是 window 对象,在 Node.js 中是 global 对象。本文将带你系统性地探索 JavaScript 中规避命名冲突的完整解决方案,从古早的约定到现代的工程化实践,帮助你构建更健壮、可维护的应用。这是最终的解决方案 - 每个文件都是一个独立的作用域,这是语言级别的支持,提供了最彻底、最优雅的隔离方式。// "我是全局变量""module": "dist/index.esm.js", // ESM入口。

2025-08-21 08:03:36 342

原创 RAG优化实战 - LinkAI智能体平台的知识库升级之路

摘要:本文以LinkAI智能体平台实践为例,系统阐述了RAG技术在企业级知识库问答中的全链路优化方案。在文档导入环节,通过智能解析、分段策略优化实现原始信息的高保真处理;检索阶段采用查询改写、混合检索等技术提升准确性;生成环节通过拒答机制、引用来源等增强可信度;最后构建三元评估体系形成数据闭环。该方案展示了RAG技术从基础应用到深度优化的演进路径,为行业落地提供了系统化参考。

2025-08-21 08:02:59 336

原创 Kafka如何保证「消息不丢失」,「顺序传输」,「不重复消费」,以及为什么会发送重平衡(reblanace)

Kafka通过多端协同保障消息可靠性:生产者端采用同步发送/回调确认,配置acks=-1及重试机制;Broker端通过ISR副本机制和持久化参数确保消息不丢失;消费者端禁用自动提交offset,采用手动提交避免消费丢失。顺序传输通过单分区或指定key发送实现,4.0版本支持共享组提升吞吐。防重复消费需业务层实现幂等处理,并优化消费性能避免Rebalance。重平衡触发场景包括消费者增减、分区变化及处理超时等,Rebalance过程会暂停消费并重新分配分区。

2025-08-21 08:00:32 231

原创 [笔记]CDQ 分治

(k\) 维偏序问题,即在一个由 \(n\) 个 \(k\) 元组构成的集合 \(\{(a_{1,1},\dots,a_{1,k}),\dots,(a_{n,1},\dots,a_{n,k})\}\) 中,求与 \((a_{i,1},\dots,a_{i,k})\) 满足某种偏序关系,即 \((a_{i,1},\dots,a_{i,k})\prec(a_{j,1},\dots,a_{j,k})\) 的 \(j\) 的个数。计算贡献时,额外限制只有带 \(L_a\) 编号的 \(i\) 能记入贡献;

2025-08-19 08:06:25 240

原创 基于 epoll 的协程调度器——零基础深入浅出 C++20 协程

本文介绍了一个基于epoll的C++20协程调度器实现,通过150行代码展示了如何将真实异步IO事件与协程结合。主要内容包括: 基于epoll实现IO多路复用,注册文件描述符与协程句柄的映射关系 设计AsyncReadAwaiter等待对象,实现试读优化和数据处理 通过signalfd实现进程完美退出机制 支持多协程并发处理多个IO事件 该实现遵循"展示核心原理"的原则,使用原生API而非第三方库,并保持代码简洁可运行。文章还探讨了await_suspend的灵活用法、协程状态管理以及工

2025-08-19 08:04:54 276

原创 【EDK2】在UDK2018中实现兼容Vscode中的Edk2Code插件

本文介绍了在UDK2018中实现兼容Vscode Edk2Code插件的原理和方法。通过对EDK2基工具(BuildReport.py)的修改,添加了生成编译信息的功能,包括compile_commands.json等IDE所需文件。关键修改包括:1)在BuildReport.py中添加GenerateCompileInfo方法;2)在build.py中添加COMPILE_INFO选项;3)在Datatype.py中添加编译器类型定义。使用Python2.7编译后,通过-YCOMPILE_INFO选项即可生

2025-08-19 08:04:13 607

原创 一步一步学习使用LiveBindings(16)使用代码创建LiveBindings绑定

本文介绍了在Delphi中使用代码创建LiveBindings绑定的方法,重点包括: LiveBindings与VCL数据绑定的核心差异:LiveBindings是独立类,通过表达式引擎实现数据感知,而VCL使用DataLinks机制。 编程创建绑定的两种方式: 使用TLinkControlToProperty类创建控件到属性的绑定 使用TBindExpression类创建表达式绑定 FluentLiveBindings辅助单元的使用: 通过链式语法简化绑定代码 支持双向绑定、格式化和跟踪等功能 内部通过接

2025-08-19 08:02:23 895

原创 汽车之家联合HarmonyOS SDK,深度构建鸿蒙生态体系

汽车之家与HarmonyOS深度合作构建鸿蒙生态,通过多项创新功能提升用户体验:视频超分技术显著提升画质,应用接续实现跨设备无缝切换,智能图片选择优化内容发布效率,日历订阅和卡证识别提供便捷服务。这些功能整合仅需少量代码,保持应用轻量化,展现了汽车之家在汽车互联网领域的专业洞察和技术创新。

2025-08-19 08:01:45 128

原创 家里有密码锁的注意了,这真不是 BUG,是 feature。

智能密码锁的"虚位密码"功能并非bug,而是设计特性。用户输入的数字串只要包含正确密码即可开锁(如"123250818456"包含"250818")。该功能旨在防止他人偷窥密码,但实际可能更常用于纠正输入错误。文章通过编程角度解析了该功能的实现原理,类似String.contains()方法,并指出该功能可能意味着密码以明文存储于本地。虽然存在安全隐患,但考虑到需要物理接触设备才能获取密码,实际风险相对可控。

2025-08-19 08:01:09 642

原创 【渲染流水线】[几何阶段]-[图元装配]以UnityURP为例

本文解析Unity URP渲染管线中的图元装配过程,详细介绍了通过MeshTopology和索引缓冲区定义图元类型的实现方法。重点阐述了五种图元(三角形、三角形条带等)的连接规则与顶点分组模式,特别强调了顶点缠绕顺序对表面剔除的影响。文章提供了URP中不同图元类型的代码实现示例,包括三角形、线段和点等,并指出底层实现的核心类与调试方法。最后指出可通过继承ScriptableRendererFeature实现自定义几何处理,为开发者理解URP渲染机制提供了实用指导。

2025-08-17 08:05:41 331

原创 在本地部署Qwen大语言模型全过程总结

本文详细介绍了在消费级显卡(RTX 4060 8GB)上本地部署Qwen1.5-7B-Chat大语言模型的全过程。主要内容包括:1)通过量化技术(4-bit/8-bit)解决显存不足问题;2)使用HF-Mirror下载模型;3)Ubuntu系统下的环境配置,包括显卡驱动安装、多版本CUDA切换方法;4)依赖库安装与虚拟环境搭建;5)最终通过Python脚本实现模型加载与对话功能。文章提供了从理论计算到实践部署的完整解决方案,特别针对国内开发者遇到的网络问题和环境配置难题给出了具体解决方法。

2025-08-17 08:04:27 596

原创 Nginx反向代理Kafka集群

摘要:本文介绍了使用Nginx反向代理Kafka集群的配置方法。通过修改Kafka的advertised.listeners为Nginx代理地址(kafka-cluster:8000),并配置Nginx的stream模块实现TCP代理。测试环境采用单机部署(Nginx 1.28和Kafka 2.13-3.9.1),使用firewalld限制只开放8000代理端口。客户端需在hosts文件中添加代理地址映射,最终实现客户端通过Nginx安全访问Kafka集群的功能。

2025-08-17 08:03:50 402

原创 一步一步学习使用LiveBindings(15)TListView进阶使用(3),创建自定义的列表项打造天气预报程序

本文介绍了如何在Delphi中创建自定义的TListView列表项,并用于天气预报程序开发。主要内容包括:1. 创建Delphi包实现自定义列表项,继承TPresetItemObjects基类,添加最低/最高温度显示字段;2. 通过LiveBindings实现数据绑定,将天气数据保存到内存表并显示;3. 自定义列表项具有响应式布局功能,能根据空间自动调整显示。文章详细讲解了关键方法重载、对象管理、数据成员设置等核心实现,并提供了完整的代码示例。通过将组件打包安装到IDE,可在多个项目中复用这种自定义列表项。

2025-08-17 08:03:13 566

原创 Python零基础从入门到精通详细教程2-变量与常量

本文详细介绍了Python中的变量与常量概念。变量作为存储数据的容器,包含数据类型、内存地址和值三要素,Python变量无需声明类型,具有动态特性。教程详解了变量命名规则(蛇形/驼峰命名法)、赋值方式(单个/多个变量赋值)、类型转换及内存管理机制,并强调"="是赋值而非数学等号。虽然Python没有真正意义上的常量,但惯例用全大写命名表示。通过实例演示了变量交换、内存地址变化等操作,并提供了苹果价格计算、个人信息存储等练习题。文章最后指出变量不能同时指向多个值,但可通过重新赋值改变引用对

2025-08-17 08:02:35 259

原创 【CRAIC】工业缺陷检测实训平台 模型训练指导手册 V1.4

《工业缺陷检测实训平台模型训练指导手册V1.4》摘要 本手册详细介绍了基于PaddleDetection框架的工业缺陷检测模型训练全流程,适用于铝片表面缺陷检测场景。主要内容包括:图像采集规范、数据集标注方法(使用labelImg工具)、模型训练流程(基于AIStackDC平台)、模型评估与优化、模型转换(使用opt工具转为FPGA支持的.nb格式)以及FPGA开发板部署方案。手册特别强调了训练环境配置(Python3.7/3.8)、数据标注规范(5类缺陷)和模型精度要求(mAP需>65%)。同时提供

2025-08-17 08:01:58 399

原创 扣子Coze实战:零基础搭建数据分析智能体,1分钟完成复盘,流量翻10倍

【摘要】本文介绍了如何利用AI智能体快速搭建短视频数据分析工具,帮助创作者高效复盘视频表现。通过Coze平台,只需1分钟即可生成专业的数据分析报告,包括关键指标对比、受众匹配度诊断、流量结构分析等,并给出具体优化建议(如前3秒钩子优化、互动引导强化等)。文章详细演示了从获取视频数据、搭建工作流到创建智能体的完整流程,让零基础用户也能快速上手。这种数据驱动的优化方法可显著提升视频表现,案例显示播放量提升62%,完播率增长282%。

2025-08-17 08:01:21 418

原创 伙伴匹配系统(移动端 H5 网站(APP 风格)基于Spring Boot 后端 + Vue3 - 03

伙伴匹配系统开发摘要 本项目是基于SpringBoot后端+Vue3前端开发的移动端H5伙伴匹配系统(APP风格)。系统实现了用户登录、修改信息等功能,并针对大数据处理进行了优化。关键技术点包括: 数据批量导入:采用分批导入策略(10/100/1000/10000),避免单次大数据量处理 并发编程:使用线程池和CompletableFuture实现高效并发处理 性能优化: 实现分页查询(MyBatis-Plus分页插件) 引入Redis缓存提高查询效率 自定义Redis序列化器解决数据乱码问题 定时任务:通

2025-08-17 08:00:43 325

原创 BFS 广度优先搜索算法

BFS(广度优先搜索)是一种基于队列的图遍历算法,适用于无权图的最短路径查找。其核心机制是逐层扩展节点,保证找到最短路径。时间复杂度O(N),空间复杂度O(N)。文章通过迷宫寻路问题展示了BFS的具体实现:初始化标记数组和方向向量,使用队列处理节点,通过回溯前驱节点输出完整路径。代码示例包含地图初始化、BFS核心逻辑和路径回溯功能,并演示了如何解决4x4迷宫问题。此外还介绍了BFS的优化方法(如双向BFS)和变种(如A*算法),并拓展到CTF逆向题中的应用场景。

2025-08-15 08:06:00 699

原创 夜莺监控的几种架构模式详解

夜莺监控架构模式解析 夜莺监控(Nightingale)是一款开源的告警引擎系统,专注于整合告警能力。核心架构包括: 数据源对接:支持Prometheus、VictoriaMetrics等各类数据源 告警引擎:周期性查询数据并生成告警事件 告警分发:通过FlashDuty等媒介通知 UI交互:内置API模块进行规则配置和事件查看 系统依赖MySQL存储规则,Redis缓存数据。夜莺可与Categraf配合实现数据采集,但需外接TSDB存储。针对多机房场景,还支持边缘架构模式解决网络连通问题。该方案有效解决了

2025-08-15 08:03:33 290

原创 博客园众包:再次诚征3D影像景深延拓实时处理方案(预算8-15万,需求有调整)

【摘要】博客园再次发布3D影像景深延拓实时处理需求,预算8-15万元。需求调整为:1)将双视角影像实时处理为全景深3D画面,确保透视准确;2)实现3840×2160@60Hz实时显示,延迟≤100毫秒(单帧<16.67ms),需保证流畅无卡顿。项目方位于杭州,支持线下沟通。诚邀技术专家参与,促进资源整合。

2025-08-15 08:02:56 163

原创 PO、VO、BO、DTO、DAO、POJO傻傻分不清楚

本文系统介绍了Java开发中常见的PO、VO、BO、DTO、DAO、POJO六种对象的区别与应用。PO是数据库映射对象,DAO封装数据访问,BO处理业务逻辑,DTO用于跨层传输,VO适配前端展示,POJO是基础数据容器。文章对比了传统三层架构与DDD架构的对象流转模型,推荐了MapStruct、Dozer等高效转换工具,并指出了常见使用误区。最后提出四个核心原则:单一职责、安全隔离、性能优先和适度设计,帮助开发者合理选择对象模型。

2025-08-15 08:02:20 636

图片格式转换-批量高效

在日常工作和生活中,我们经常需要处理大量的图片文件。PNG格式因其无损压缩和透明背景特性而被广泛使用,但在某些场景下(如网页优化、打印、上传到某些平台等),我们可能需要将PNG转换为更通用的JPG格式。手动转换不仅效率低下,还容易出错。为此,我开发了一款**「专业PNG转JPG批量转换工具」**,支持一键批量转换,保持画质无损,并具备友好的图形界面。

2025-04-11

基于python的微信记账小程序

基于python的微信记账小程序

2025-04-22

基于springboot的园林绿化管理系统

基于springboot的园林绿化管理系统

2025-04-22

骚神插件8.5版本,助理元素快速定位,脚本开发

骚神插件8.5版本,助理元素快速定位,脚本开发

2025-04-02

抖音视频关键词采集、视频评论采集

抖音视频关键词采集、视频评论采集

2025-03-28

心血管预测分析-网站-flask-速随机森林-mysql

管理员:用户管理、操作日志管理、数据集管理与分析、模型监控; 用户:健康数据管理与分析、健康评估、风险预测

2025-02-23

关键词采集抖音视频信息,根据视频id采集对应视频评论信息支持导出csv.xlsx

关键词采集抖音视频信息,根据视频id采集对应视频评论信息支持导出csv.xlsx

2025-03-27

数据集-途家民宿评论信息

数据集-途家民宿评论信息-数据分析-景点分析等

2025-03-11

基于电商平台的订单数据进行深入分析,旨在通过数据挖掘和可视化手段,洞察电商业务的运营状况,识别市场趋势,优化产品策略,并提出针对性的营销策略建议 报告涵盖数据预处理、财务分析、产品分析、市场分析

电商数据分析报告 概述 本报告基于电商平台的订单数据进行深入分析,旨在通过数据挖掘和可视化手段,洞察电商业务的运营状况,识别市场趋势,优化产品策略,并提出针对性的营销策略建议。报告涵盖数据预处理、财务分析、产品分析、市场分析和客户分析五个部分。 数据预处理 本模块旨在对电商订单数据进行预处理,以确保数据的质量和一致性,为后续的分析工作打下坚实的基础。预处理步骤包括数据验证、日期格式处理、缺失值处理、异常值处理、数据标准化以及时间特征的添加。 相关代码: def preprocess_data(data):     # 添加数据验证     assert 'Order Date' in data.columns, "缺少订单日期列"     assert 'Total Amount' in data.columns, "缺少总金额列"     # 处理日期格式     data['Order Date'] = pd.to_datetime(data['Order Date'])     # 处理缺失值     data.fillna({'Shipping Status': '未知

2024-12-02

python 大数据分析 招聘历史数据集

采集了多年来各大平台各个时间段多行业多岗位的就业数据

2025-02-02

windows计划任务python脚本调度器工具

## 计划任务调度器工具介绍 **概述:** 计划任务调度器是一款功能强大且易于使用的工具,旨在帮助用户自动化重复性任务。通过该工具,用户可以轻松设置和管理计划任务,例如定时执行脚本、备份数据或发送电子邮件等。 **主要功能:** * **任务设置:** * **脚本文件选择:** 用户可以选择需要执行的脚本文件。 * **任务类型:** 支持多种任务类型,包括每天、每周、每月或自定义间隔执行。 * **执行时间:** 用户可以指定任务的具体执行时间。 * **自定义间隔:** 对于需要频繁执行的任务,用户可以设置自定义间隔时间(以秒为单位)。 * **任务管理:** * **添加任务:** 用户可以添加新的计划任务。 * **启动/停止任务:** 用户可以随时启动或停止已添加的任务。 * **导出日志:** 工具提供日志导出功能,方便用户查看任务执行情况。 * **任务监控:** * **任务名称:** 显示所有已添加任务的名称。 * **执行时间:** 显示每个任务的最近执行时间。

2025-01-15

python打包工具-windows一键打包运行

Python打包工具,支持将Python脚本打包成独立的可执行文件

2025-01-15

python安装包!!快速下载!!!

python安装包!!快速下载!!!

2024-12-02

游览器插件!快速便捷!!助理数据采集

游览器插件

2024-12-02

大厂面试必备-深入剖析Java基础之面向对象特性

内容概要:本文深入讲解了Java基础中的面向对象特性,包括封装、继承、多态、抽象等四个核心特性。每个特性都有详细的理论解释和示例代码,帮助读者理解和应用这些概念。此外,文章还比较了Java和C++的主要区别,介绍了final、finally和finalize的区别,重载与重写的区别,反射机制,以及Java的泛型机制及其实现原理。最后,文章详细阐述了Java中值传递与引用传递的区别。 适合人群:初级和中级Java开发者,准备大厂面试的技术人员。 使用场景及目标:① 深入理解Java面向对象的核心特性,提升编程能力和代码质量;② 掌握Java与C++的主要区别,选择合适的语言进行开发;③ 区分final、finally和finalize的作用,理解重载与重写的区别,熟练运用反射和泛型机制;④ 清楚理解Java中值传递与引用传递的差别。 其他说明:本文内容丰富,涵盖多个知识点,建议读者逐个章节学习,结合示例代码实践,以达到更好的学习效果。

2024-11-27

Java开发腾讯面试重点解析-关键字与语法

内容概要:本文详细解析了 Java 开发中常见的面试题,涵盖了 static 关键字、transient 和 volatile 关键字以及 synchronized 的原理和应用。针对每个关键字,文章不仅介绍了其基本概念,还通过具体代码示例进行了详细说明,包括静态变量、静态方法和静态代码块的使用场景,以及 volatile 保证多线程可见性的机制。最后,讨论了 memory leak(内存泄漏)的原因和解决方法,以及如何实现一个不可变类。 适合人群:具备一定 Java 编程基础的开发人员,尤其是准备腾讯或其他大型互联网公司面试的技术人员。 使用场景及目标:帮助求职者更好地理解和掌握 Java 中重要关键字和机制,提高面试成功率。同时也适用于已经在职但希望巩固基础和优化代码质量的 Java 开发者。 其他说明:本文内容丰富且实用,既有理论讲解也有代码实战,建议读者在阅读过程中动手实践,以便更好地理解和掌握知识点。

2024-11-27

咸鱼关键词多价格采集数据

用于从二手电商平台(如闲鱼)上自动采集商品数据的工具。它能通过输入关键词、设置价格区间等参数,快速获取指定商品的相关信息。这类工具常用于市场分析、价格趋势研究或辅助电商运营。

2024-11-27

在虚拟机中模拟DDoS攻击,并配置相应防御策略 考试题目如下: 模拟SYN 洪水攻击及防御,模拟Smurf攻击及防御,模拟do

一、实验背景目的及原理 1. 模拟SYN洪水攻击及防御 实验背景: SYN洪水攻击(SYN Flood)是一种广为人知的拒绝服务(DoS)攻击,其利用TCP协议的三次握手过程中的缺陷。在正常的TCP连接建立过程中,客户端发送一个SYN报文给服务器端,服务器回应SYN+ACK报文,然后客户端再发送ACK报文进行确认,三次握手完成后连接建立。然而,如果客户端发送大量SYN报文却不回应服务器的SYN+ACK报文,服务器会为了这些未完成的连接不断分配资源,最终耗尽资源而无法处理正常的客户端连接请求。 实验目的: 模拟SYN洪水攻击,通过发送大量伪造的TCP连接请求(SYN报文)来消耗目标系统的资源。 测试和验证防御措施的有效性,如修改TCP连接参数(如tcp_synack_retries和tcp_syncookies)、使用防火墙和入侵检测系统(IDS)等。 实验原理: SYN洪水攻击的原理在于利用TCP协议三次握手机制的缺陷。攻击者通过伪造IP地址和端口号,向目标服务器发送大量SYN请求报文,但不响应服务器的SYN+ACK报文。服务器在等待客户端的ACK报文时,会保持这些未完成的连接状态,并

2024-10-18

【STM32单片机】贪吃蛇游戏设计

【STM32单片机】贪吃蛇游戏设计 本项目支持STM32F103/STM32F407控制器,使用TFTLCD触摸屏、按键、LED等。 项目功能:系统运行后,TFTLCD触摸屏显示游戏界面,通过按键任意键进入游戏界面,然后通过按键KEY_UP、KEY1、KEY2和KEY0键控住上下左右方向。每当蛇吃到3个食物,速度就会提升一个等级,并且显示得分和等级,最高位5级。当游戏结束后可按任意键重新回到主界面开始。

2023-12-13

自动化文件夹脚本程序,批量创建文件夹

当你需要在计算机上批量创建文件夹时,可以使用脚本来自动化这个过程。下面是一个简单的Python脚本示例,它能够根据指定的文件夹名和数量,批量创建文件夹。

2023-12-13

百度热搜数据集2022.8-2025.6

百度热搜数据集2022.8-2025.6

2025-07-16

抖音热搜历史数据集-2023.3-2025.6年热搜数据集

抖音热搜历史数据集-2023.3-2025.6年热搜数据集; 字段:标题、在榜时间、在榜时长、排名、链接

2025-07-15

微博历史-热搜数据集:数据从2021年6月14到2025年6-30日数据集整合

微博热搜历史数据集:数据从2021年6月14到2025年6-30日数据集整合;字段:标题、最后在热榜时间、持续在榜时长、最高排名、热度、采集时间、更新时间

2025-07-14

微博评论爬虫-接口采集非自动化

微博评论爬虫-接口采集非自动化

2025-07-06

京东商品采集、店铺采集、评价采集-网站可视化;资源内存储爬虫、数据库数据、前后端完整内容

京东商品采集、店铺采集、评价采集-网站可视化 详情见博文:https://niuma.blog.csdn.net/article/details/148825464?spm=1011.2415.3001.5331

2025-06-22

使用Python打造强大的词云图生成器:从TXT到可视化的数据之旅

使用Python打造强大的词云图生成器:从TXT到可视化的数据之旅;工具介绍博客:https://blog.csdn.net/weixin_55010563/article/details/148580833?

2025-06-11

游览器切换代理saoshen插件

游览器切换代理saoshen插件

2025-06-10

中国高校数据采集与可视化分析系统

中国高校数据采集与可视化分析系统

2025-06-09

家政服务系统-springboot+vue

家政服务系统-springboot+vue

2025-05-24

https://hbba.sacinfo.org.cn/stdList-行业标准信息服务平台-数据集

行业标准信息服务平台-数据集-https://hbba.sacinfo.org.cn/stdList 字段:标准号 发布日期 实施日期 制修订 代替标准 中国标准分类号 国际标准分类号 技术归口 批准发布部门 行业分类 标准类别 标准名称 备案号 备案日期 起草单位 起草人

2025-05-21

一起上岸研友网站设计与实现

一起上岸研友网站设计与实现

2025-05-21

基于Django框架的高校实验室管理系统设计与实现-毕业设计

高校实验室管理系统是一个基于Django框架开发的综合性平台,旨在提升实验室管理效率,优化资源配置,并简化预约流程。系统包含用户管理、实验室资源管理、预约管理、设备管理、数据统计与分析、通知与消息系统等六大功能模块,支持多角色用户系统,包括管理员、教师、学生和实验室管理员。技术架构采用HTML5/CSS3/JavaScript、Bootstrap、jQuery/AJAX等前端技术,以及Django框架、PostgreSQL/MySQL数据库等后端技术。系统特色包括响应式设计、权限精细控制、智能冲突检测、数据可视化和扩展性强。预期成果包括资源利用率提高30%以上,预约流程时间缩短50%,设备维护响应时间缩短40%,管理成本降低25%。该系统将为高校实验室管理提供现代化、智能化的解决方案,促进实验室资源的合理配置和高效利用。

2025-05-15

基于springboot的教师日程管理系统

**基于SpringBoot的教师日程管理系统** 本系统是一款专为高校教师设计的智能化日程管理平台,基于SpringBoot框架开发,整合Spring Security、JPA、Redis等技术,提供高效、安全的日程管理解决方案。系统支持教学计划安排、会议管理、科研任务跟踪及个人事务提醒,帮助教师优化时间分配,提升工作效率。 **核心功能** 1. 日程管理:支持创建、编辑、分类(教学/会议/科研/个人)日程,提供智能冲突检测和多方式提醒(系统通知/邮件)。 2. 教学管理:课程表维护、教室预约、教学进度跟踪,避免时间冲突。 3. 会议协作:会议创建、邀请、签到管理,支持会议室预约和纪要共享。 4. 数据分析:可视化统计日程分布、活动占比,辅助教师优化时间管理。 5. 共享与协作:支持个人、院系或全校日程共享,促进团队协作。 **技术优势** • 前后端分离:前端采用Bootstrap+Thymeleaf,后端基于SpringBoot,确保高性能与可扩展性。 • 安全可靠:Spring Security实现权限控制,Redis缓存提升响应速度,Quartz定时任务保障提醒精准送达。 • 多端适配:响应式设计,兼容PC和移动端,数据实时同步。 本系统助力教师高效管理时间,平衡教学、科研与生活,是现代化高校管理的理想工具。

2025-05-13

Python+Flask+MySQL膳食健康管理系统设计与实现(附完整源码+数据库)

知识领域:计算机科学/健康营养信息学 技术关键词:Python 3.8+, Flask 2.0, MySQL 8.0, Pandas, Matplotlib, scikit-learn 内容关键词:膳食分析系统、营养计算算法、健康数据可视化、个性化饮食推荐 用途: 1. 计算机专业毕业设计参考项目 2. 健康管理类应用开发实战案例 3. 营养学与信息技术交叉学科研究素材 4. Python全栈开发学习项目

2025-05-13

PyQt5(GUI框架)、Folium(地图可视化)

技术关键词:PyQt5(GUI框架)、Folium(地图可视化)、NetworkX(图算法)、QWebEngineView(网页渲染) 内容关键词:景点数据库、交互式地图、路线规划算法、用户界面设计 用途:帮助游客规划最优旅游路线,可视化展示景点分布,计算景点间最短路径,提升旅游体验效率 1. 使用PyQt5构建直观的用户界面 2. 集成Folium地图实现景点可视化 3. 基于NetworkX实现Dijkstra等路径规划算法 4. 提供景点搜索、路线规划、时间估算等功能 5. 支持交互式地图操作和路线展示

2025-05-13

咸鱼采集-支持首图预览-发起对话

咸鱼采集-支持首图预览-发起对话

2025-05-08

基于python的新能源汽车推荐及数据分析系统完整源码

基于Python的新能源汽车推荐及数据分析系统 系统概述本系统是一个基于Python技术栈开发的新能源汽车智能推荐与数据分析平台,旨在帮助消费者根据个人需求筛选合适的新能源汽车,同时为行业从业者提供市场趋势分析和决策支持。 核心功能 1. 智能推荐引擎 • 多维度筛选:支持按价格区间、续航里程、品牌偏好等条件筛选 • 混合推荐算法:结合协同过滤与内容相似性推荐 • 个性化排序:根据用户历史行为动态调整推荐权重 2. 深度数据分析 • 市场趋势分析:销量走势、价格分布、品牌占有率 • 技术参数对比:电池性能、充电效率、动力系统 • 用户评价分析:情感分析、关键词提取、评分分布 3. 可视化展示 • 交互式仪表盘:动态图表展示核心指标 • 车辆对比工具:雷达图/柱状图多维度对比 • 地理热力图:区域销量和政策可视化 技术架构 1. 技术栈 • 后端:Python + Flask/FastAPI • 前端:HTML5 + JavaScript + Dash/Plotly • 数据库:MySQL/MongoDB + Redis缓存 • 数据分析:Pandas + NumPy + SciPy • 机器学习:Scikit-learn + TensorFlow(可选) 2. 系统架构 ``` 用户层 → API网关 → 业务服务层 → 数据服务层 → 数据存储层 ↑ 缓存层(Redis) ``` 1. 数据采集:通过API/爬虫获取车辆数据 2. 数据清洗:处理缺失值、标准化格式 3. 数据存储:结构化存储到数据库 4. 数据分析:执行统计分析/机器学习 5. 结果展示:通过可视化组件呈现

2025-04-23

本文介绍使用Python+DrissionPage开发的BOSS直聘职位信息自动化采集系统 该系统可实现:自动登录企业账号关键词搜索职位滚动加载全量数据自动化数据存储反爬机制规避

BOSS直聘职位信息自动化采集系统设计与实现 一、项目背景 本文介绍使用Python+DrissionPage开发的BOSS直聘职位信息自动化采集系统。该系统可实现: 1. 自动登录企业账号 2. 关键词搜索职位 3. 滚动加载全量数据 4. 自动化数据存储 5. 反爬机制规避 ![BOSS直聘数据采集架构图](https://example.com/architecture.png) 二、环境准备 依赖库安装 ```bash pip install DrissionPage DataRecorder requests openpyxl ``` 环境要求 1. Chrome浏览器(版本与chromedriver匹配) 2. 配置ChromeDriver路径 3. 企业账号权限(需实名认证) 三、核心代码解析 1. 初始化配置 ```python page = WebPage('d') # 使用无头模式 recorder = Recorder(f'{keyword}.xlsx', cache_size=10) # 初始化数据记录器 ``` • `WebPage('d')`:启用无头浏览器模式 • `Recorder`:配置Excel存储引擎,设置10条缓存 2. 登录模块 ```python def login(): page.get('https://www.zhipin.com/nanjing/?ka=query_select_city_101190100') input('登录后回车......') ``` • 自动跳转到城市选择页面 • 手动扫码登录机制(应对滑动验证码) 3. 核心采集逻辑 ```python def spider(): link = f'https

2025-04-25

yolo的算法模型的人群计数系统

yolo的算法模型的人群计数系统

2025-04-22

该系统旨在利用协同过滤算法为用户提供个性化的体育商品推荐,提高用户购物体验和商家销售转化率

**基于协同过滤算法的体育商品推荐系统** **详细需求分析文档** --- **1. 引言** **1.1 目的** 本需求分析文档旨在详细描述基于协同过滤算法的体育商品推荐系统的功能、性能、数据及安全需求,为系统设计、开发和测试提供依据。 **1.2 适用范围** • 适用于电商平台、体育用品商城等需要个性化推荐功能的系统。 • 适用于产品经理、开发团队、测试团队及业务方。 **1.3 术语定义** | 术语 | 定义 | |------|------| | 协同过滤(CF) | 基于用户历史行为(如评分、购买、浏览)计算用户或商品相似度,进行个性化推荐。 | | 用户相似度 | 衡量不同用户偏好的相似程度,用于基于用户的协同过滤(User-based CF)。 | | 商品相似度 | 衡量不同商品被同一用户偏好的相似程度,用于基于商品的协同过滤(Item-based CF)。 | | 冷启动问题 | 新用户或新商品因缺乏历史数据而难以推荐的问题。 | | Top-N推荐 | 系统向用户推荐最可能感兴趣的N个商品。 | --- **2. 系统功能需求** **2.1 用户管理模块** | 功能 | 详细描述 | |------|---------| | 用户注册/登录 | 支持邮箱、手机号、第三方账号(微信、Google)登录。 | | 用户画像 | 记录用户基本信息(性别、年龄、运动偏好)。 | | 行为数据采集 | 记录用户浏览、收藏、购买、评分等行为,用于推荐计算。 | | 偏好设置(可选) | 允许用户手动调整推荐偏好(如“更喜欢篮球类商品”)。 | **2.2 商品管理模块** | 功能 | 详细描述 | |------|---------

2025-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除