AcWing 3549. 最长非递减子序列 (lis或者状态机)

该博客探讨了一种使用动态规划解决序列匹配问题的方法。通过分析1*2*类型的序列,提出了两种策略:一是计算1*2*子序列的长度之和,二是四部分状态转移。博主给出了C++代码实现,主要涉及数组、预处理和状态转移的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这道题目最优解是1*2*1*2*类型,这样就有两种处理方式:

一种是求1*2*的长度再加上1*2*的长度,枚举求最大值

还有一种方式是四部分分成四个状态去求,也很好转移,下面代码给出的是第一种求法:

#include<bits/stdc++.h>
using namespace std;
const int N=1e6+10;
int n,a[N],pre[N],ne[N],f[2],ans;
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        a[i]--;
    }
    for(int i=1;i<=n;i++){
        if(!a[i])pre[i]=++f[0];
        else pre[i]=f[1]=max(f[0],f[1])+1;
    }
    f[0]=f[1]=0;
    for(int i=n;i;i--){
        if(a[i])ne[i]=++f[1];
        else ne[i]=f[0]=max(f[1],f[0])+1;
    }
    for(int i=1;i<n;i++){
        ans=max(ans,pre[i]+ne[i+1]);
    }
    cout<<ans<<endl;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值