

Managing Software Process Knowledge

Ligia da Motta Silveira Borges
CDSV SA

Fernando Ferrari Av. 1000, CEP 29060-410
Vitória – ES - Brazil
ligias@zaz.com.br

Ricardo de Almeida Falbo
Computer Science Department,

Federal University of Espírito Santo
Fernando Ferrari Av., CEP 29060-900,

Vitória - ES - Brazil
falbo@inf.ufes.br

Abstract
In this paper, we discuss the crucial importance of

storing and sharing the experience obtained in process
definition to the continuous improvement of process
quality. To share this knowledge, an experience
repository should be built containing the organizational
standard process as well as the artifacts and informal
knowledge obtained throughout the projects. In order to
facilitate the storage and sharing of the experience, we
built a tool that supports the standard software process
tailoring procedure for each project, providing a search
mechanism.

1. Introduction

 The demand in the software development area has
increased and brought up some new requirements. Time
to market, better quality and greater productivity are now
critical aspects to the competitiveness of the software
organizations. Besides this, the complexity of the
software products to be developed has increased.
 Since software quality is directly related to the quality
of the process through which software is developed, one
of the main directions pursued by researchers and
practitioners is centered on the study and improvement of
the software process [1].
 To be effective and to lead to good quality products, a
software process should be adequate to the application
domain and to the specific project itself. Processes should
be defined for each case, considering the application
characteristics, the development team and the technology
to be applied. Although different projects require
processes with specific features in order to regard its
peculiarities, it is possible to establish a set of software
process assets for use in software process definition. This
collection of software process assets is called standard
software process. Projects tailor the organization's
standard software process to develop their own defined
software process, which accounts for the unique

characteristics of the project. This tailored process is
referred to as the project's defined software process [2].

Since the standard process tailoring for each project is
a hard task, offering an automated support for this task
becomes an important challenge.
 The Centro de Desenvolvimento de Sistemas de Vitória
- CDSV (System Development Center of Vitória) is
inserted in this context. It is one of the five Xerox
development centers around the world. CDSV has
invested in the quality of its development process, having
been certified as CMM (Capability Maturity Model)
maturity level 3.
 In 1998, after being certified as CMM-level-3, CDSV
established an annual project, the SPI (Software Process
Improvement) project, as a way for improving
continuously the software process. As a result, goals are
being established every year and these are used as basis
for planning the improvement actions.
 Based on previous SPI projects, the following issues
were defined as being the most problematic ones in the
CDSV improvement efforts:

• instantiation of the standard software process for
specific projects;

• knowledge sharing during the projects; and
• use of project’s feedback for improving the

software process.
 Updating the organizational software process is not
enough. It is necessary to disseminate the lessons learned
from the projects through the organization. An
organization that does not register the successes or
failures of its projects will have as a result the repetition
of the failures. This organizational learning has not
obtained good results at CDSV. Based on that, knowledge
management (KM) was pointed as an interesting approach
to deal with the main problems detected.
 This paper discusses the use of KM in process
improvement and presents ProKnowHow, a tool that was
developed to support the standard process tailoring for the
projects, allowing the knowledge acquired in this process
to be shared. Section 2 gives an overview of KM and its

application by the software engineering community.
Section 3 discusses the software development process and
the difficulties found in its definition. Section 4 presents
ProKnowHow, a KM-based tool for supporting project’s
software process definition from a standard software
process. Section 5 discusses related works. The paper
ends with a summary and a conclusion in Section 6.

2. Knowledge Management

Knowledge is considered to be a crucial resource of an
organization, and then it should be carefully managed.
Historically, organization knowledge has been stored on
paper or in people’s mind. Unfortunately, paper has
limited accessibility and it is difficult to update [3].
Knowledge in people’s mind is lost when individuals
leave the company. Furthermore, in a large organization,
it can be difficult to localize who knows some matter. So,
knowledge has to be systematically collected, stored in a
corporate memory, and shared across the organization.

Knowledge Management (KM) entails formally
managing knowledge resources in order to facilitate
creation, access and reuse of knowledge, typically using
advanced technology. KM is formal in that knowledge is
classified according to a prespecified ontology into
structured databases [3].

The basic KM activities include: identification,
capture, adaptation, integration, dissemination, use, and
maintenance of knowledge. At the core of a KM system,
it is a corporate or organizational memory, supporting
reuse and sharing of organizational knowledge, including
lessons learned [4].

Information technology plays a major supporting role
in knowledge management [5]. A wide range of
technologies are being used to implement KM systems,
what includes databases and data warehouses, intranets
and internet, browsers and search engines, intelligent
agents and so on [3]. Also, several methods are being
used to build corporate memories, such as knowledge
engineering methods (e.g. CommonKADS), requirements
analysis methods and ontology-based approaches [6].

Ontologies are particularly important for KM. They
constitute the glue that binds KM activities together,
allowing a content-oriented view of KM [5]. Ontologies
define the shared vocabulary used in the KM system to
facilitate communication, integration, search, storage and
representation of knowledge [3].

In the software development context, knowledge reuse
and sharing are a crucial asset for continuous
improvement of the software process and consequently,
the resulting products. The interaction between projects
and corporate memory establishes two feedback loops.
The first takes place during process execution, when
knowledge obtained during the project course is analyzed
and small changes to the execution of the process are

applied (learning in project level). The second loop aims
the knowledge packing at the end of the project, and the
use of this knowledge in a new project, resulting in
corporate learning [7].

The organizational goals determine the type of
knowledge to be acquired by an organization. Any type of
knowledge can be used to reduce rework and improve
quality. Processes, quality models, development artifacts,
expertise and lessons learned are examples of reusable
knowledge. The proper storage of knowledge must,
however, also be taken care of in order to achieve
efficient reuse of knowledge in software organizations. A
knowledge item generated in a project must, in general,
be adapted to the need of future projects, and supplied
with information capable to facilitate its reuse [7].

3. Software Process Improvement and KM

A software process can be seen as a group of activities,
methods, tools and practices that are used to build a
software product. Humphrey [8] defines software process
as the group of necessary software engineering tasks to
transform the users' requirements in software. In the
definition of a software process the following information
should be considered: activities to be accomplished,
necessary resources, requested and produced artifacts,
adopted procedures and the life cycle model used [9].

It should be noticed that there is no software process
that can be applied to every kind of project, since every
software development project is unique in some sense.
Software type, application domain, team features,
development technology and paradigm, project size and
complexity, development methods, among other factors,
have influence on the way a software product is acquired,
developed, operated and maintained. However, there is a
set of process assets, called standard process, that should
be incorporated to any defined processes. The standard
process defines a common structure to be followed by all
projects, no matter which characteristics the software to
be developed has. There is a number of reasons to define
a standard process [8]:

• An organizational software process minimizes
problems related to training, revisions and tool
support;

• The experiences acquired in the projects can be
incorporated to the standard process, contributing
to improvements in all defined processes;

• Less time and effort are spent in defining projects’
processes.

This tendency in using a standard process can be
proved by several quality models and standards, such as
ISO/IEC 12207, ISO/IEC TR 15504 and CMM. All of
them suggest the use of a standard process as the starting
point from which defined processes can be established. In
this context, it is very important to promote continuous

process improvement and we should establish procedures
for regularly updating the organizational software
process.

But updating the organizational process is not enough.
Lessons learned during a project’s process definition
should be shared with other project managers. In this
context, an attractive approach is to offer automated
support to software process definition, using KM. Such a
tool needs to satisfy some requirements to allow
developers communicate and collaborate, including:

• Its organizational memory should contain both
formal and informal knowledge. Also, this
organizational memory should be built based on
an ontology defining a shared vocabulary;

• It should be defined the contents of the
organizational memory. Also, a characterization
scheme should be defined, specially to deal with
informal knowledge retrieve and access.

• A systematic procedure for process definition
should be establish in order to be automated;

• Politics for knowledge filtering should be defined.
Because knowledge quality and importance varies
from source to source, it is crucial to resort to
knowledge filtering to ensure that the knowledge
is really relevant;

All these requirements were considered in the
development of ProKnowHow, a KM-based tool for
supporting software process definition. It should be
highlighted that ProKnowHow were defined in the
context of CDSV and so it considers that there is a
standard software process established. Thus a project’s
software process definition is in fact an instantiation (or
tailoring) of the standard process.

4. ProKnowHow: A KM-based Tool for
Supporting Software Process Instantiation

ProKnowHow was developed to achieve the following
goals:

• To support the standard process tailoring for
projects;

• To collect and disseminate the knowledge
acquired during standard process instantiation;

• To support standard process updating based on the
feedback from projects.

Thus, ProKnowHow had to satisfied the requirements
set above. To deal with these requirements, ProKnowHow
has the architecture shown in Figure 1.

The knowledge repository is divided in formal and
informal knowledge repositories. The first is composed of
process assets. The second stores lessons learned.

A project manager can use ProKnowHow to instantiate
a software process for a project (Process Tailoring). In
this task, he/she can search the knowledge repository to

find relevant knowledge for his/her job (Knowledge
Dissemination). Also during project’s process definition
the project manager can input informal knowledge about
its job (Knowledge Capturing).

Finally, ProKnowHow offers a service for updating the
standard software process, which is available for a
Knowledge Manager. The Knowledge Manager is also
responsible for adapting and approving a lesson learned
input by a project manager (Knowledge Filtering).

Next, we present how ProKnowHow addresses the
requirements pointed above.

Figure 1. ProKnowHow architecture.

Organizational Memory (OM) Structure and Contents

First of all, the OM was built based on a software
process ontology. This ontology was developed to support
the acquisition, organization, reuse, and sharing of
software process knowledge [9]. In ProKnowHow, it was
used to establish a common vocabulary, facilitating
process knowledge sharing and knowledge items search.

As pointed above, the OM should contain both formal
and informal knowledge. In the process definition

Formal
Knowledge

Informal
Knowledge

Organizational Memory

Knowledge
Capturing

Project
Manager

Knowledge
Manager

Knowledge
Dissemination Process

Tailoring

Standard
Process

Updating

Knowledge
Filtering

context, there are two kinds of formal knowledge:
software process assets and software process definition
artifacts.

Once the standard process is the basis to the project’s
process instantiation, it is necessary to maintain its assets.
Having the CMM as basis, the CDSV standard process is
composed of the following assets:

• Life cycle models – a description of an ordered set
of activities to realize the software development.
Life cycle models are used as a reference in the
definition of a software process, establishing
macro-activities and the dependency relation
between them. For each project, a life cycle model
should be selected;

• Activities – tasks or pieces of work to be done
during software development;

• Document models – patterns that define the format
and guidelines for project artifact development;

• Procedures - well established and organized
means for performing activities;

• Tools - software resources used to support the
accomplishment of the activities;

• Policies - directions that govern the organization.
Artifacts are also formal knowledge. In the context of

process definition, project’s plan is the most important
artifact produced. By using ProKnowHow, one can
include, modify and exclude project’s defined processes,
using a configuration management system.

Lessons Learned are the informal knowledge handled
by ProKnowHow. They are stored in the OM with the
following information:

1. Project – indicates in which project the lesson was
generated;

2. Process Asset – refers to process assets to which
the lesson is associated;

3. Type of the lesson learned – identifies whether the
lesson is positive (good practice) or negative
(improvement opportunity);

4. Problem – a description of the problem being
addressed;

5. Solution – a description of the solution to the
problem;

6. Context – a description of the situation in which
the lesson were generated.

Process Tailoring

ProKnowHow guides the project manager in the
adaptation of the standard process for each project,
suggesting life cycle models, activities, procedures,
resources, and so on. Figure 2 shows an outline of the
process tailoring procedure used in CDSV. It is composed
of three main activities: project characterization, life cycle
model selection and activity selection.

In the project characterization step, project
characteristics are informed, as well as the project’s

desired quality profile. The main objective is to
incorporate the project specific characteristics to the
tailored process. The following set of information is of
great importance:

• Project characteristics – include staff features,
such as the user’s ability to communicate
requirements and team experience; problem
features, such as problem complexity and
application domain stability; product features,
such as estimated product size and product type
(off-the-shelf / customized solution); and
development features, such as development
paradigm and software type (Real Time Systems,
Information Systems, Web Systems, and so on).

• Quality profile - in order to decide which activities
of the standard process should be considered, a
maturity level must be selected. Also, it is possible
to personalize a maturity level by choosing which
key process areas must be added;

Figure 2. Standard process tailoring procedure.
Once the project is characterized, a life cycle model

can be selected. Only life cycle models approved for use
by the CDSV are considered in this step. Based on
project’s characteristics, ProKnowHow suggests life cycle
models to be used, as shown in Figure 3. The project
manager is free to accept or reject this suggestion.

Using the selected life cycle model, project’s
characteristics and the quality profile, a preliminary
process can be proposed. In the activity selection step, the
project manager can add or remove activities from the
process. Also, for each activity, pre-activities, sub-
activities, input and output artifacts, procedures, resources
and tools should be defined.

Project
Characterization

Defined
Process

Software type
Problem characteristics
Team characteristics
Paradigm and
development technology
Quality profile

Life Cycle
Model

Selection

Activity
selection Activities

Resources
Procedures
Artifacts
Resources

Standard
Process

Life Cycle
Models

Figure 3. Selecting a life cycle model in ProKnowHow.

Management and quality control activities are selected

according to the maturity level and key process areas
chosen for the project. Management activities are those
related to the project planning and tracking. Quality
control activities, in turn, concerns those activities defined
to assure the quality of the product being developed or the
quality of the process used.

Development activities are directly related to the
software construction process. They should be performed
even if the project that does not have to reach the
corresponding key process area. Therefore, their selection
is closely related to the characteristics of the project as
well as to the selected life cycle model.

Knowledge Capturing and Dissemination

Throughout the software process definition process,

the project manager can ask for help. ProKnowHow
offers a search functionality, shown in the left side of
Figure 3. This reactive functionality can be used to
retrieve both formal (process assets) and informal (lessons
learned) knowledge. We can say that ProKnowHow also
offers some kind of proactive behavior, since during
process definition it always suggests software process
assets according to the process definition step. In this
case, only formal knowledge is considered.

The project manager is free to accept, or not, the
suggestions given by the tool. However, if the resulting
process does not conform to the standard process, he/she

has to justify his/her attitude as a lesson learned. Also, the
project manager can note comments about the guidelines
that he/she has received from the tool. In this way,
informal knowledge is captured. As shown in Figure 1,
ProKnowHow also offers a functionality for maintaining
the standard process, that is its formal knowledge.

Knowledge Filtering

When dealing with lessons learned, we have to

consider another question. Project-level knowledge can be
useful, but it is not always the case. Generally, project-
level knowledge must be handled to become an
organizational knowledge. In CDSV, the Knowledge
Manager is responsible to check all lessons learned, and
to decide if they should, or not, be available in the
informal knowledge repository. Also, once defined that a
lesson learned is really useful, the Knowledge Manager
should make the appropriate changes to transform it in an
organizational-level knowledge.

ProKnowHow supports a workflow for approving a
lesson learned. First, a project manager inputs a lesson
learned in the informal knowledge base. At this moment,
this knowledge is not available for other project
managers. The knowledge manager must to evaluate and
adapt the lesson learned so that it can be considered an
organizational knowledge. Once approved, the lesson
learned is made available.

5. Related work

Several works have exploited the use of KM systems
to support software engineering tasks.

Markulla [10] describes an initiative at ICL Finland to
promote software engineering knowledge sharing and
reuse. The focus is on supporting development tasks, such
as planning, design and coding.

Althoff et al. [11] propose a generic, scalable
architecture and its underlying methodology for reuse and
continuous learning of all kinds of software engineering
experience. Also they used a project as a scenario for
demonstrating their approach. The focus is on reuse.

In [12], a system for supporting experience
management in a multinational software improvement
consultancy called Q-Labs is presented. The objective is
to provide a “virtual office” for Q-Labs, and to allow Q-
Labs consultant to benefit from the experience of every
other Q-Labs consultants.

Looking to these works, we can find many common
points. All of them, including our, are based on the
concept of Experience Factory [13]. Lessons learned are
used also in a similar way. However, none of them offers
support for defining software processes from a standard
software process. Thus, it is worth to remember that this
work was developed in the context of a CMM level 3
organization and that the formal knowledge are process
assets.

In [14], a tool called Assist-Pro was proposed to
support software process definition according to the
project specific characteristics. However, this work does
not consider the use of a standard process as a basis for
the process definition. Besides, Assist-Pro does not deal
with informal knowledge.

6. Conclusions

This paper presented the CDSV’s initiative to promote
software process knowledge sharing, supported by
ProKnowHow, a KM-based tool. ProKnowHow is now
being implanted at CDSV’s Intranet. We believe that it
will contribute to process improvement at this
organization, mainly because:

• Process definition task is being supported by a
tool. Since ProKnowHow gives several advices,
this task trends to become easier.

• ProKnowHow has potential for making the use of
project’s feedback in software process
improvement easier. Since lessons learned are no
more stored on paper, data can be processed in
order to find improvement opportunities in the
standard software process.

We expect to present actual results, corroborating our
expectations or not, as soon as ProKnowHow’s data are
used by the CDSV’s SPI Project.

Since CDSV is studying ways to achieve CMM level
4, we are now working to extend ProKnowHow to deal
with software metrics knowledge. We have applied the
Gol-Question-Metric model to define the CDSV’s metrics
set and we are now defining the contents of a metrics
knowledge repository. Finally, we are also studying how
agent technology can be used to improve ProKnowHow’s
proactive behavior.

References

[1] A. Fuggetta, “Software Process: A Roadmap”, in Proc. of
The Future of Software Engineering, ICSE’2000, Limerick,
Ireland, 2000.
[2] M. C. Paulk, C. V. Weber, S. M. Garcia, M. B. Chrissis and
M. Bush, “Key Practices of the Capability Maturity Model,
Version 1.1”, Technical Report CMU/SEI-93-TR-025, 1993.
[3] D. E. O’Leary, “Enterprise Knowledge Management”, IEEE
Computer, vol. 31, no. 3, pp. 54-61, March 1998.
[4] A. Abecker, A. Bernardi, K. Hinkelmann, O. Kuhn and M.
Sintek, “Toward Technology for Organizational Memories”,
IEEE Intelligent systems, vol. , no. , pp. 40-48, May/June 1998.
[5] S. Staab, R. Studer, H.P. Schnurr and Y. Sure, “Knowledge
Processes and Ontologies”, IEEE Inteligent Systems, vol. , no. ,
pp. 26-34, January/February 2001.
[6] R. Dieng, O. Corby, A. Giboin and M. Ribière, “Methods
and Tools for Corporate Knowledge Management”, Int. Journal
of Human-Computer Studies, vol. 51, no. 3, pp. 567-598, 1999.
[7] M. Broomé and P. Runeson, “Technical Requirements for
the Implementation of an Experience Base”, in Proc. of the 11th
Int. Conference on Software Engineering and Knowledge
Engineering , SEKE’99, Kaiserslautern, Germany, 1999.
[8] W.S. Humphrey, Managing the Software Process. Addison-
Wesley Publishing, Company, Massachussets, 1990.
[9] R. A. Falbo, C.S. Menezes, and A.R.C. Rocha, “Using
Ontologies to Improve Knowledge Integration in Software
Engineering Environments”, in Proceedings of SCI’98/ISAS’98,
Orlando, USA, July, 1998.
[10] M. Markkula, “Knowledge Management in Software
Engineering Projects”, in Proc. of the 11th Int. Conference on
Software Engineering and Knowledge Engineering, SEKE’99,
Kaiserslautern, Germany, 1999.
[11] K-D. Althoff, A. Birk, S. Hartkopf, W. Muller, M. Nick, D.
Surmann, and C. Tautz, “Managing Software Engineering
Experience for Comprehensive Reuse”, in Proc. of the 11th Int.
Conference on Software Engineering and Knowledge
Engineering, SEKE’99, Kaiserslautern, Germany, 1999.
[12] M.G. Mendonça Neto, V. Basili, C.B. Seaman, and Y-M
Kim, “A Prototype Experience Management System for a
Software Consulting Organization”, in Proc. of the 13th Int.
Conference on Software Engineering and Knowledge
Engineering, SEKE’01, Buenos Aires, Argentina, 2001.
[13] V. Basili, G. Caldiera, and H. ROMBACH, “The
Experience Factory”, in: Encyclopedia of Software Engineering,
vol..1, John Wiley & Sons, 1994.
[14] R.A. Falbo, C.S. Menezes, and A.R.C. Rocha, “Using
Knowledge to Promote Knowledge Integration in Software
Engineering Environments”, in Proc. of the 11th Int. Conference
on Software Engineering and Knowledge Engineering,
SEKE’99, Kaiserslautern, Germany, 1999.

	Fernando Ferrari Av. 1000, CEP 29060-410
	Ricardo de Almeida Falbo
	Computer Science Department,
	Federal University of Espírito Santo
	Fernando Ferrari Av., CEP 29060-900, Vitória - ES - Brazil
	
	Abstract
	In this paper, we discuss the crucial importance of storing and sharing the experience obtained in process definition to the continuous improvement of process quality. To share this knowledge, an experience repository should be built containing the organ
	
	Knowledge Filtering

	References

