AIStor 与 NVIDIA NIM™ 集成

基于 AIStor 强大的 AI 功能,MinIO 的 PromptObject 使用户能够通过自然语言查询与他们的数据进行交互,如此处所述。PromptObject 允许用户使用自然语言询问有关其数据内容的问题并提取信息,从而改变了用户与存储对象的交互方式,无需编写复杂的查询或代码。今天,我们通过添加对 NVIDIA NHIM™ 的支持来扩展这些功能,为用户提供强大的 GPU 加速选项,以便直接从全局控制台进行 AI 模型部署和管理。这种集成通过将 NVIDIA 的优化推理功能引入您的数据层来增强 PromptObject 的现有功能,为用户如何利用 AI 与其存储的数据进行交互创造了新的可能性。让我们深入了解此集成的工作原理及其优势。

了解 NVIDIA NIM

NVIDIA NIM 是 NVIDIA AI Enterprise 的一部分,是一组易于使用的微服务,旨在跨工作站、数据中心和云安全可靠地部署高性能 AI 模型推理。这些预构建的容器支持广泛的 AI 模型,从开源社区模型到 NVIDIA AI Foundation 模型,以及自定义 AI 模型。NIM 微服务通过单个命令进行部署,只需几行代码即可使用标准 API 轻松集成到企业级 AI 应用程序中。NIM 建立在强大的基础之上,包括 NVIDIA Triton 推理服务器™、TensorRT、™ TensorRTLLM 和 PyTorch 等推理引擎,旨在促进大规模无缝 AI 推理,确保您可以放心地在任何地方部署 AI 应用程序。无论是在本地还是在云中,NIM 都是大规模实现加速生成式 AI 推理的最快方法。

NIM 部署生命周期

NIM 遵循简单的部署生命周期,可确保高效的模型部署和初始化。以下是 NVIDIA 文档中的官方流程,显示了 NIM 容器的运行方式:

此生命周期说明了 NIM 部署的几个关键方面:

1 . 容器初始化:从简单的 docker run 命令开始

2 . Intelligent Model Management:下载前检查本地模型可用性

3 . NGC 集成:需要时从 NVIDIA NGC 自动下载模型

4 . API 兼容性:启动与 OpenAI 兼容的 REST API 服务器以实现标准化访问

MinIO AIStor 与 NIM 的集成实现了整个生命周期的自动化,通过其直观的界面处理容器部署、模型管理和 API 设置。

NIM 的主要优势包括:

  • 由 NVIDIA TensorRT 和 TensorRT 提供支持的预优化推理引擎-LLM

  • 行业标准 API,集成简单

  • 针对特定 GPU 配置优化响应延迟和吞吐量

  • 支持模型自定义和微调

AIStor 与 NIM 的集成

MinIO 的 AIStor 通过 NVIDIA NIM 微服务集成简化了 AI 驱动的与存储对象的交互。这两项服务在同一个 Kubernetes 集群中运行,提供无缝集成,同时允许通过标准 API 进行外部访问。以下是核心工作流程:

1 . 转到要启用 PromptObject 的对象存储。

2 . 单击 Enable Prompt Object 按钮。

3 . 配置 NIM 推理设置:AIStor 在此处提供 2 个选项。配置 NIM 推理设置:AIStor 在此处提供 2 个选项。

  • 使用官方 NIM 预构建镜像在您自己的 Kubernetes 集群中部署 NIM 微服务,如下所示:

在此步骤中,您需要提供部署 NIM 容器所需的配置详细信息。这包括指定 GPU 类型、副本计数、资源限制、容器映像和环境变量。完成后,点击 优惠 按钮

注意:您可以按照说明从 NVIDIA NGC Docs 获取NGC_API_KEY。在上面的示例中,我们使用的是 meta/llama-3.2-11b-vision-instruct,它使用 1 个 GPU 资源来开始使用。您可以从此处获取所有受支持型号的列表,并在此处获取这些型号的 GPU 要求。由于我们已经在集群中安装了 NVIDIA GPU Operator 作为 AIStor 设置的一部分(有关更多详细信息,请参阅 AIStor GPU 支持博客),因此 AIStor 可以利用 GPU 资源来运行 NIM 容器。

b. NVIDIA 托管的 NIM 服务

如果您没有可用的 GPU,则可以通过在 AIStor Global 控制台中启用使用外部推理切换并提供 OpenAI API 兼容端点 (https://integrate.api.nvidia.com/v1) 来使用 NVIDIA 托管的 NIM 服务器。您还需要提供 NGC API 密钥作为 OPENAI_API_KEY 和 MODEL 环境变量,该变量将成为 PromptObject 使用的默认模型。

4 . 转到 Object Browser 并选择要与之交互的对象。

5 . 单击该按钮以开始使用自然语言与对象交互。

除此之外,您还可以通过 K8s 集群外部的 MinIO SDK 使用 ‘PromptObject’ API,如程图所示:

此部署体系结构支持:

  • 在 Kubernetes 中统一管理存储和 AI 服务

  • AIStor 和 NIM 微服务之间安全高效的内部通信

  • 通过标准 S3 兼容 API 轻松进行外部访问

  • 可根据您的需求扩展的可扩展基础设施

对用户的好处

这种集成带来了几个关键优势:

1 . 简化部署

  • 一键部署 AI 模型

  • 无需额外的基础设施设置

  • 与现有的 MinIO 身份验证集成

2 . 优化的性能

  • 使用 TensorRT 进行硬件优化推理

  • 减少实时应用程序的延迟

  • 高效的资源利用率

3 . 直接访问模型

  • 无缝访问 NVIDIA 优化的 AI 模型

  • 支持自定义微调模型

  • 针对可用 GPU 资源的自动模型优化

4 . 增强的安全性

  • 集成身份验证

  • 安全的模型部署

  • 容器安全功能

5 . 可扩展性

  • Kubernetes 原生扩展

  • 多副本支持

  • 资源感知部署

实际应用

该集成支持几个强大的使用案例:

1 . 文档分析

  • 存储文档的自然语言查询

  • 自动内容摘要

  • 语义搜索功能

2 . 媒体处理

  • 自动图像和视频分析

  • 内容分类

  • 特征提取

3 . 数据洞察

  • 交互式数据探索

  • 自动生成报告

  • 模式识别

结论

MinIO 将 NVIDIA NIM 集成到 AIStor 中,代表着在对象存储系统中更容易访问 AI 功能方面向前迈出了重要一步。通过简化 AI 模型的部署和管理,同时保持高性能和安全性,这种集成使组织能够更有效地利用其存储的数据来获得 AI 驱动的洞察和自动化。MinIO 的高效对象存储、PromptObject API 的自然语言功能以及 NVIDIA 的优化推理服务相结合,为希望在现有存储基础设施中实施 AI 功能的组织创建了一个强大的平台。要了解有关 PromptObject 功能的更多信息,请查看以下主题:使用 Prompt API 与您的对象聊天和与您的数据交谈:使用 AI 驱动的对象存储实现医疗保健转型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值