
Sieve theory and gaps between primes:
Narrow admissible tuples

Andrew V. Sutherland
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(on behalf of D.H.J. Polymath)

Explicit Methods in Number Theory
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

July 10, 2015

Explicitly proving bounded gaps
Recall that our goal is to prove upper bounds on

Hm := lim inf
n→∞

pn+m − pn.

We do this by finding an integer k and a function F ∈ L2(Rk) for which†

ρ(F) > 4m.

This shows Mk = sup ρ(F) > 4m, which in turn implies DHL[k,m + 1].

We can then conclude that Hm ≤ H(k), where

H(k) := min{diamH : H is an admissible k-tuple}.

We are thus interested in explicit bounds for H(k).
We obtain upper bounds by constructing narrow admissible k-tuples.

†We can alternatively use F ∈ L2(αRk) with α := min(δ
1/4+$, 1), for any 600$ + 180δ < 7.

In this case we only require ρ(F) > 1
1/4+$.

An easy asymptotic upper bound

Recall that a k-tuple H = {h1, . . . , hk} is admissible if the reduction map
H → Z/pZ is not surjective for any prime p. This clearly holds for p > k.

If we put n = π(k), then the set

{pn+1, pn+2, . . . , pn+k}

is an admissible k-tuple. If we apply the asymptotic bounds

pn = n log n + n log log n− n + O
(

n
log log n

log n

)
,

π(k) =
k

log k
+ O

(
k

(log k)2

)
with n = π(k) we obtain

H(k) ≤ pn+k − pn+1 = k log k + k log log k − k + o(k).

An asymptotic lower bound

Let M(y) be the largest integer k for which diamH < y for some admissible
k-tuple H. Then M(H(k)) = k − 1, and for any integers k and d,

M(d) ≤ k − 1⇐⇒ H(k) ≥ d.

An explicit form of the Brun-Titchmarsh theorem due to Montogmery and
Vaughan states that

π(x + y)− π(x) ≤ 2y
log y

for all integers x ≥ 1 and y ≥ 2. The proof involves sieving the interval
[x + 1, x + y] and can be adapted to show that M(y) ≤ 2y

log y for all y ≥ 2.
From this one may deduce M(1

2 k log k) ≤ k − 1 for k ≥ 8, and therefore

H(k) ≥ 1
2

k log k,

which in fact holds for all integers k ≥ 2.

Incompatibility of the Hardy-Littlewood conjectures
The prime tuples conjecture if the first of two conjectures by Hardy
Littlewood made in the same paper. The second is the following.

Conjecture (Hardy-Littlewood 1923)
For all x, y ≥ 2 we have π(x + y)− π(x) ≤ π(y).

Taken together, the two Hardy-Littlewood conjectures together imply

H(k) ≥ pk.

Theorem (Hensley-Richards 1972)
H(k) < pk for all sufficiently large k.

Theorem (Engelsma 2005)
H(447) ≤ 3158 < p447 = 3163†.

†Conjecturally, the first Dickson 447-tuple should lie between 10174 and 101199.

http://link.springer.com/article/10.1007%2FBF02403921
http://link.springer.com/article/10.1007%2FBF02403921
http://www.ams.org.libproxy.mit.edu/mathscinet-getitem?mr=340194
http://www.opertech.com/primes/k-tuples.html

Incompatibility of the Hardy-Littlewood conjectures

Better asymptotic upper bounds on H(k)

Hensley and Richards obtained their results by sieving a centered interval
[−x/2, x/2] rather than [0, x]. They proved the asymptotic bound

H(k) ≤ k log k + k log log k − (1 + log 2)k + o(k).

Schinzel showed that by sieving [0, x] at 1 mod 2 and 0 mod p for odd
primes p should conjecturally improve this to

H(k) ≤ k log k + k log log k − (1 + 2 log 2)k + o(k),

and Hensley and Richard pushed this further and conjectured the bound

H(k) ≤ k log k + k log log k − (1 + o(1))k log log log k.

But we believe that in fact H(k) ≤ k log k + (1 + o(1))k.

Conjecture
H(k) < k log k + k for all k ≥ 389.

Constructing admissible tuples by sieving

We can construct an admissible k-tuple by sieving the integers of one
residue class modulo each prime p ≤ k and taking the k least survivors.
(sieving 0 mod p amounts to taking the first k primes greater than k).

But this is overkill, one can typically terminate the sieve early.

Some examples (start by picking a sufficiently large x):
1 Eratosthenes: sieve [2, x] at 0 mod p until the k least survivors form an

admissible k-tuple.
2 Hensley-Richards: sieve [− x

2 ,
x
2] at 0 mod p until the k survivors of least

absolute value form an admissible k-tuple
3 Schinzel: sieve [2, x] at 1 mod p for p ≤ y and 0 mod p for p > y until the

k least survivors form an admissible tuple.
4 Greedy: sieve [0, x] of a minimally occupied residue class a mod p until

the k least survivors form an admissible tuple.

Shifting the sieve interval slightly often yields better results.

Discipline versus greed

All of the structured approaches are demonstrably sub-optimal.
And the greedy approach is often worse than any of them!

However, there is a hybrid approach works that remarkably well.

Let w = k log k + k, and for even integers s in [−w,w] :

1 Sieve [s, s + w] at 1 mod 2 and 0 mod p for primes p ≤
√

w.
2 For increasing primes p >

√
w sieve a minimally occupied residue

class mod p until the tuple H of survivors is admissible.
3 If |H| 6= k, adjust the sieving interval and repeat until |H| = k.

Output an H with minimal diameter among those constructed.

This algorithm is not optimal, but it typically gets within one percent of the
best known results (including cases where H(k) is known).

(demo)

https://math.mit.edu/~drew/sievedemo.html

Sieve comparison

k 632 1783 34 429 341 640 3 500 000 75 845 707 3 473 955 908

k primes past k 5028 16 174 420 878 5 005 362 59 874 594 1 541 858 666 84 449 123 072
Eratosthenes 4860 15 620 411 946 4 923 060 59 093 364 1 526 698 470 83 833 839 848
H-R 4918 15 756 402 790 4 802 222 57 554 086 1 488 227 220 81 912 638 914
Shifted Schinzel 4868 15 484 399 248 4 740 846 56 789 070 1 467 584 468 80 761 835 464
Shifted hybrid 4710 15 036 388 076 4 603 276 55 233 744 1 431 556 072 not available
Best known 4680 14 950 386 344 4 597 926 55 233 504 1 431 556 072 80 550 202 480

bk log k + kc 4707 15 130 394 096 4 694 650 56 238 957 1 452 006 268 79 791 764 059

http://math.mit.edu/~primegaps/tuples/admissible_632_5028.txt
http://math.mit.edu/~primegaps/tuples/admissible_1783_16174.txt
http://math.mit.edu/~primegaps/tuples/admissible_34429_420878.txt
http://math.mit.edu/~primegaps/tuples/admissible_341640_5005362.txt
http://math.mit.edu/~primegaps/tuples/admissible_3500000_59874594.txt
http://math.mit.edu/~primegaps/tuples/admissible_632_4860.txt
http://math.mit.edu/~primegaps/tuples/admissible_1783_15620.txt
http://math.mit.edu/~primegaps/tuples/admissible_34429_411946.txt
http://math.mit.edu/~primegaps/tuples/admissible_341640_4923060.txt
http://math.mit.edu/~primegaps/tuples/admissible_3500000_59093364.txt
http://math.mit.edu/~primegaps/tuples/admissible_632_4918.txt
http://math.mit.edu/~primegaps/tuples/admissible_1783_15756.txt
http://math.mit.edu/~primegaps/tuples/admissible_34429_402790.txt
http://math.mit.edu/~primegaps/tuples/admissible_341640_4802222.txt
http://math.mit.edu/~primegaps/tuples/admissible_3500000_57554086.txt
http://math.mit.edu/~primegaps/tuples/admissible_632_4868.txt
http://math.mit.edu/~primegaps/tuples/admissible_1783_15484.txt
http://math.mit.edu/~primegaps/tuples/admissible_34429_399248.txt
http://math.mit.edu/~primegaps/tuples/admissible_341640_4740846.txt
http://math.mit.edu/~primegaps/tuples/admissible_3500000_56789070.txt
http://math.mit.edu/~primegaps/tuples/admissible_632_4710.txt
http://math.mit.edu/~primegaps/tuples/admissible_1783_15036.txt
http://math.mit.edu/~primegaps/tuples/admissible_34429_388076.txt
http://math.mit.edu/~primegaps/tuples/admissible_341640_4603276.txt
http://math.mit.edu/~primegaps/tuples/admissible_3500000_55233744.txt
http://math.mit.edu/~primegaps/tuples/admissible_632_4680.txt
http://math.mit.edu/~primegaps/tuples/admissible_1783_14950.txt
http://math.mit.edu/~primegaps/tuples/admissible_34429_386344.txt
http://math.mit.edu/~primegaps/tuples/admissible_341640_4597926.txt
http://math.mit.edu/~primegaps/tuples/admissible_3500000_55233504.txt

Getting that last one percent

Given a narrow admissible tuple, there are a variety of combinatorial
optimization methods that we can apply to try and improve it.

These include local search and perturbation methods, such as
simulated annealing.

The technique that we found most useful uses a genetic algorithm.
For k < 106, all of the best known admissible k-tuples not previously found
by Engelsma’s search were constructed by some version of this algorithm.

Given a k-tuple H, we generate a new tuple H′ by sieving the same
interval of the same residue classes for p ≤

√
k log k, and randomly

choosing a nearly minimally occupied class for p >
√

k log k.

The set H ∪H′ contains an admissible k-tuple (namely, H), but if
we sieve this set by greedily choosing residue classes as required,
we may obtain a k-tuple H′′ that is actually narrower than H.

Database of admissible tuples

We have established an online database of admissible tuples.

It includes at least one example of an admissible k-tuple of least known
diameter for 2 ≤ k ≤ 5000 and is open for submission.

For k ≤ 342 it contains optimal tuples contributed by Engelsma.
For many k > 342 we have tuples narrower than those obtained by
Engelsma, and in other cases we independently matched his results.

Finding better lower bounds for H(k) remains an open problem.

For k = 632 we were able to prove H(632) ≥ 4276, but we expect that
in fact the upper bound H(632) ≤ 4680 is tight.

(admissible 632-tuple of diamter 4680)

http://math.mit.edu/~primegaps/
https://math.mit.edu/~primegaps/sieve.html?ktuple=632

Explicit lower bounds
There are two methods for proving explicit lower bounds that may be
significantly better than 1

2 k log k for small to medium size k.

For any partition d = d1 + · · ·+ dn of a positive integer d we have

M(d) ≤
∑

M(di).

For di ≤ 342 optimal bounds on M(di) are known, and we can take the
minimum of

∑
M(di) over all such partitions as an upper bound on M(d),

which implies a lower bound on H(k). This works fairly well for k ≤ 1000.

For larger k we use an inclusion/exclusion approach (see next slide).

Both approaches can be combined with an exhaustive sieving step, in
which we restrict to tuples that do not occupy a fixed set of residue classes
modulo small primes p (say p ≤ 19). Iterating over all possible choices of
and taking the worst case yields a general bound.

Examples of lower bounds obtained by these methods can be found here.

http://michaelnielsen.org/polymath1/index.php?title=Finding_narrow_admissible_tuples#Benchmarks

Lower bounds via inclusion/exclusion

Let H be an admissible k-tuple of diameter H(k) in the interval I = [0,H(k)].
For p ≤ k, let ap denote a residue class modulo p not present in H,
and let Sp := {n ∈ I : n ≡ ap mod p}. Then H = I −

⋃
p Sp, and

|H| = |I| −
∣∣∣⋃

p

Sp

∣∣∣,
and this implies H(k) + 1 = k +

∣∣⋃
p Sp
∣∣, so lower bounds on

∣∣⋃
p Sp
∣∣ imply

lower bounds on H(k). By inclusion/exclusion we have∣∣∣⋃
p

Sp

∣∣∣ ≥∑
p

|Sp| −
∑
p,q

q<p

|Sp ∩ Sq| =
∑

p

(
|Sp| −

∑
q

q<p

|Sp ∩ Sq|
)
.

We may bound each term on the RHS from below by iterating over residue
classes ap mod p, and for each q < p choosing aq to maximize |Sp ∩ Sq|; the
minimum value of |Sp| −

∑
q |Sp ∩ Sq| is then a lower bound on the pth term

on the RHS, and we sum the nonzero lower bounds thus obtained.

Fast admissibility testing

Simple approach: for each prime p ≤ k, construct a bit-vector v with the
(h mod p)th bit of v set for each h ∈ H. If v = (1, . . . , 1) for any p then reject,
otherwise accept. O(k2 log log k log log log k) time, assuming fast arithmetic.

This can be heuristically improved by a factor of ≈ log k as follows:

1 Represent H as a bit-vector b with bh = 1⇔ h ∈ H.
2 For each p ≤ k, choose m so that k randomly dropped balls are

unlikely to occupy all of the first m of p bins (so m = O(1) for p = k/c).
3 To test whether H occupies the residue classes [1,m] mod p, check

b1, . . . ,bm,bp+1, . . . ,bp+m, . . ., a total of md|H|/pe bits.
4 If H does not occupy every residue classes in [1,m] mod p then H is

admissible at p; otherwise test admissibility at p as above.

In practice this algorithm is typically faster than the simple approach by a
factor of 10 or 20 for k ∈ [105, 1010].

Fast sieving for very large k

The Hensley-Richards and Schinzel sieves can both be achieved in
quasi-quadratic time (essentially the cost of a single admissibility test).

Let us illustrate how this is done in the case of the Hensley-Richards sieve.

Consider the k-tuple

H(m) := (−pm+bk/2c−1, . . . ,−pm+1, . . . ,−1, 1, . . . , pm+1, pm+dk/2e−1).

For m = π(k) we know H(m) is admissible. Now iteratively decrement m,
and for each new value check whether H(m) is admissibile modulo pm+1.
As soon as this fails, increment m and do a full admissibility test.

This will usually succeed, but if not, increment m until it does.

When k is very large, in order to save space one may use a windowed
sieve, with a window size approximately equal to the square-root of the
length of the interval being sieved.

