
Static Detection of Deadlocks in Erlang

Maria Christakis1 and Konstantinos Sagonas1,2

1 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

2 Department of Information Technology, Uppsala University, Sweden
{mchrista,kostis}@softlab.ntua.gr

Abstract. We address the problem of detecting two different kinds of
possible deadlocks in Erlang programs using static analysis. Our analysis
is completely automatic, fast and effective in detecting deadlocks while
avoiding most false alarms. We have integrated our analysis in dialyzer, a
widely used tool for detecting software defects in Erlang programs, and
demonstrate its effectiveness on open-source libraries and applications of
considerable size. Despite the fact that most of these applications have
been used over a long period of time and are reasonably well-tested, our
analysis has detected a number of previously unknown deadlocks in their
code that may have devastating effects at runtime.

1 Introduction

A deadlock is an unintended condition under which a number of actions are stuck
on some synchronization primitive waiting for each other to proceed. Although
deadlocks can have detrimental effects on a running system, they are likely to
occur even in applications that have been used and tested for a long period of
time. Concurrent programs that employ a wide range of synchronization prim-
itives to control thread interactions and avoid other concurrency errors, such
as data races, are usually particularly prone to deadlocks. On top of that, the
shift to multi-core machines makes many more thread interactions possible, thus
making deadlocks more likely.

Erlang [1] is a functional programming language that has been designed
with the aim of simplifying concurrent programming. The language avoids the
complicated management of threads and the error-prone use of explicit lock-
ing operations on shared variables, since its concurrency model is based on
light-weight, user-level processes that communicate using asynchronous message
passing. However, Erlang does not avoid all problems associated with concurrent
execution. In particular, it provides for interactions and communication patterns
between processes that may be stuck in their execution until some conditions
are met, hence allowing certain kinds of deadlocks in programs. In addition, as
Erlang’s primary application area is in large-scale, reactive control systems that
create an unbounded number of processes, such as server applications, these pro-
cess interactions become complex and extremely hard to predict. Not only that,
but also deadlocks may remain unexposed during testing and when revealed, it
is quite distressing to reproduce them, let alone find their cause.



2 Maria Christakis and Konstantinos Sagonas

To ameliorate this situation, we have identified two kinds of possible dead-
locks in concurrent Erlang programs, and have designed an effective analysis
that detects them and brings them to the attention of the programmers. Besides
tailoring the analysis to the characteristics of the language, the main challenges
for our work have been to develop an analysis that: 1) is completely automatic
requiring no guidance from its user, and 2) strikes a proper balance between
soundness and completeness for efficiency reasons. As we will soon see, we have
achieved these goals.

The contributions of our work are as follows:

– we document the most important kinds of deadlocks in Erlang programs;
– we present an effective analysis that detects these errors, and
– we demonstrate the effectiveness of our analysis by running it on a set of

widely used and reasonably well-tested libraries and open source applications
and reporting a number of previously unknown deadlocks in their code bases.

The next section gives a brief overview of the Erlang language and the defect
detection tool that is the implementation platform for our work. Sect. 3 describes
two kinds of possible deadlocks in Erlang programs, followed by Sect. 4 that
presents in detail the analysis we use to detect them. The effectiveness of our
analysis is evaluated in Sect. 5. The paper ends with a review of related work
(Sect. 6) and some final remarks.

2 Erlang and Dialyzer

Erlang [1] is a strict, dynamically typed, functional programming language with
support for concurrency, communication, distribution, fault-tolerance, on-the-fly
code reloading, automatic memory management and support for multiple plat-
forms. Erlang’s primary application area has been in large-scale embedded con-
trol systems developed by the telecom industry, but its uses have expanded to
application areas such as web services, online commerce, gaming, banking, etc.
The main implementation of the language, the Erlang/OTP (Open Telecom Plat-
form) system from Ericsson, has been used quite successfully both by Ericsson
and by other companies around the world to develop software for large commer-
cial applications. Nowadays, applications written in the language are significant,
both in number and in code size, making Erlang one of the most industrially
relevant declarative languages.

Erlang’s main strength is that it has been built from the ground up to support
concurrency. Its concurrency model differs from that of most other programming
languages as it is not based on shared memory but on asynchronous message
passing between extremely light-weight processes (lighter than OS threads).
Erlang comes with a spawn family of primitives to create new processes, and
with ! (send) and receive primitives for interprocess communication via mes-
sage passing. Any data can be sent as a message and processes may be located
on any machine. Each process has a mailbox, essentially a message queue, where
each message sent to the process will arrive. Message selection from the mailbox



Static Detection of Deadlocks in Erlang 3

occurs through pattern matching. To support robust systems, a process can reg-
ister to receive a message if another one terminates. Erlang provides mechanisms
for allowing a process to timeout while waiting for messages, a try/catch-style
exception mechanism for error handling, and ways to organize processes in su-
pervision hierarchies to restart or take over the duties of dead or irresponsive
processes.

Since 2007, the Erlang/OTP distribution includes a static analysis tool, called
dialyzer [2,3], for finding software defects in single Erlang modules or entire ap-
plications. These defects include type errors, exception-raising code, code that
has become unreachable due to some logical error, etc. Nowadays, dialyzer is
used extensively in the Erlang programming community and is often integrated
in the build environment of many applications. The tool is totally automatic,
easy to use and supports various modes of operation: command-line vs. GUI,
starting the analysis from source vs. byte code, focussing on some kind of de-
fects only, etc. For sequential programs, notable characteristics of dialyzer’s core
analysis are that it is sound for defect detection (i.e., it produces no false alarms),
fast and scalable. Its core analyses that detect defects are supported by various
components for creating and manipulating function call graphs for a higher-
order language, control-flow analyses, efficient representations of sets of values,
data structures optimized for computing fixpoints, etc. Since November 2009,
dialyzer’s analysis has been enhanced with a component that automatically de-
tects data races in Erlang programs [4]. Recently, we have also presented a static
analysis that is able to detect some commonly occurring kinds of message pass-
ing errors in languages with dynamic process creation and communication based
on asynchronous message passing [5]. This analysis is integrated in the develop-
ment version of dialyzer. Before we describe how we extended dialyzer’s analyses
to detect another class of concurrency errors, namely deadlocks, let us first see
the kinds of deadlocks that may exist in Erlang programs.

3 Deadlocks in Erlang

In this paper, we consider a deadlock to be the condition under which the
progress of a number of processes is prevented due to some dependence either
on each other or on other processes. Based on this definition, we focus on two
kinds of deadlocks, namely the communication and the behaviour deadlocks. We
present them in the following two subsections.

3.1 Communication Deadlocks

Let us examine Erlang’s main concurrency primitives in more detail:

Spawn The spawn primitive creates a process and returns a process identifier
(pid) for addressing the newly spawned process. The new process executes
the code of the function denoted in the argument of the spawn. In the exam-
ple program shown in Fig. 1, two processes are spawned that will execute the



4 Maria Christakis and Konstantinos Sagonas

-module(ping_pong).

-export([play/0]).

play() ->
Ping = spawn(fun ping/0),
spawn(fun() -> pong(Ping) end).

ping() ->
receive

pong -> ok
end.

pong(Ping) ->
Ping ! pong,
receive

ping -> ok
end.

Fig. 1. Example program with a communication deadlock

code of the ping/0 function and the function closure, that just calls pong/1.
We will refer to these processes as the ping and pong processes respectively.

Send The expression Pid ! Msg sends the message Msg, that may refer to any
valid Erlang term, to the process with pid Pid in a non-blocking operation.
In our example program, the pong process sends the message pong to the
ping process.

Receive Messages are received with the receive construct. Each process has
its own mailbox for messages it receives. A mailbox functions as a queue
in the sense that any new messages are placed at the end of the mailbox.
When a process executes a receive, the first message in the mailbox is
matched against the patterns of the receive in sequential order. If the mes-
sage matches some pattern, it is removed from the mailbox and the actions
corresponding to the matching pattern are executed. However, if the mes-
sage does not match, it is kept in the mailbox and the next message is tried
instead. If this matches any pattern, it is removed from the mailbox while
keeping the previous and any other messages in the mailbox. In case the end
of the mailbox is reached and no messages have been matched, the process
blocks (i.e., stops execution) and waits to be rescheduled to repeat this pro-
cedure. In the example program of Fig. 1, the ping process will receive a
pong message from the pong process but the latter will block as its mailbox
will be empty.

Misuse of these concurrency and communication primitives may lead to com-
munication deadlocks. In such deadlocks, messages are the resources for which
processes wait. We therefore define a communication deadlock as the condition
under which one or more processes block on some receive statement. More
specifically, a communication deadlock occurs in the following cases:

No messages A receive statement in the code executed by some process
blocks because the process mailbox is always empty. This defect could reveal



Static Detection of Deadlocks in Erlang 5

a set of processes mutually waiting for messages from each other without any
process in the set ever sending a message.

Messages of the wrong kind A receive statement in the code of some pro-
cess blocks because the process mailbox always contains messages of different
kinds than those expected by the receive. Such a defect, apart from block-
ing the process execution, can have devastating effects on a running system,
overflowing the mailbox of some process and bringing the node down.

Such types of concurrency defects might have disastrous consequences in any
system, let alone the safety-critical systems developed in the telecommunications
sector. But these are not the only kind of deadlocks possible in Erlang programs.

3.2 Behaviour Deadlocks

Erlang/OTP comes with some commonly employed concurrency design patterns,
called behaviours. For example, the client-server model, comprising a central
server and an arbitrary number of clients, is frequently used for resource man-
agement, i.e., the clients share a common resource managed by the server. Usu-
ally, the clients and servers in each instance of the client-server model share
similar structure patterns, and behaviours are generic implementations of these
patterns. The standard Erlang/OTP behaviours include the implementation of
servers in client-server relations, finite state machines, event handlers and super-
visors in supervision trees. User-defined behaviours may also be implemented but
are beyond the scope of this paper.

When a behaviour is used in the implementation of a process, the code is
divided into a generic and a specific part, called the behaviour and callback
modules respectively. For built-in behaviours, the behaviour module is part of
Erlang/OTP while the callback module is implemented by the user. For instance,
for the creation of a server process, the user must write a callback module that
exports a predefined set of callback functions.

In the example program of Fig. 2, gen server and server are the behaviour
and callback modules, as declared in the behaviour and module attributes re-
spectively. The callback module provides an interface to the server for manipu-
lating a counter, a set of callback functions and two macro definitions. The server
interface includes functions make counter/1, count down/1 and set/2 that, in
the order mentioned, create a counter initialized to zero, perform a countdown
to zero and set the counter to a given value. The state of the counter is stored in
an Erlang Term Storage (ETS) table that is public to all processes. The callback
functions init/1, handle call/3 and handle cast/2 are implicitly called by
the following functions of the behaviour module:

gen server:start link(ServerName,Module,Args,Options) which creates a
generic server process that calls function Module:init/1 with arguments
Args to initialize. The server is registered, either locally or globally, under a
name specified in ServerName.



6 Maria Christakis and Konstantinos Sagonas

-module(server).

-behaviour(gen_server).

-export([make_counter/1, count_down/1, set/2]).

-export([init/1, handle_call/3, handle_cast/2]).

-define(S, server).
-define(T, table).

make_counter(?T) ->
gen_server:start_link({local, ?S}, ?S, ?T, []).

count_down(?T) ->
gen_server:call(?S, ?T).

set(?T, N) ->
gen_server:cast(?S, {?T, N}).

init(?T) ->
ets:new(?T, [named_table, public]),
ets:insert(?T, {counter, 0}),
{ok, feeling_good}.

handle_call(?T, _From, St) ->
[{counter, N}] = ets:lookup(?T, counter),
case N of

0 ->
ok;

_ ->
ets:insert(?T, {counter, N - 1}),
gen_server:call(?S, ?T, infinity)

end,
{reply, 0, St}.

handle_cast({?T, N}, St) ->
ets:insert(?T, {counter, N}),
{noreply, St}.

Fig. 2. Example program with behaviour deadlock

gen server:call(ServerRef,Request) which makes a synchronous call to the
server with reference ServerRef by sending a request and waiting until a re-
ply arrives or a timeout occurs. The default value for the timeout is 5000 ms.
If no reply is received within this specified time, the call fails. The server
calls function Module:handle call/3 to handle the request. Here, the ref-
erence ServerRef is determined by the registered name ServerName passed
to gen server:start link/4 and Module refers to the callback module also
passed to the same behaviour function.

gen server:call(ServerRef,Request,Timeout) which has the same function-
ality as gen server:call/2. The only difference is that this call allows the
user to specify how long to wait for a reply. Timeout may be either a positive
integer specifying the number of milliseconds to wait or the atom infinity
meaning that the call will wait indefinitely for a reply.

gen server:cast(ServerRef,Request) which makes an asynchronous call to
the server with reference ServerRef by sending a request and returning
immediately. The server calls function Module:handle cast/2 to handle the
request.

The astute reader has already noticed that the count down/1 function of
Fig. 2 will fail due to a deadlock: It calls function gen server:call/2 and
waits for a reply. However, the handle call/3 function, that handles this re-
quest, instead of calling itself recursively in order to successively reduce the
value of the counter, sends another synchronous request to the server with the
gen server:call/3 call. If the example were not made up, we would assume
that the programmer considered the gen server:call/3 and handle call/3
functions equivalent, forgetting that the former is the synchronous version of
the latter. As a result, the gen server:call/2 function becomes synchronously
recursive, deadlocks and fails when the default timeout occurs. Taking the ex-
ample program a step further, it is possible for more than one servers to be
involved in such a deadlock in case a server’s synchronous request issues addi-



Static Detection of Deadlocks in Erlang 7

tional such requests to other servers that analogously issue synchronous requests
to the server that initially triggered them. We therefore define a behaviour dead-
lock as the condition under which two or more synchronous behaviour calls are
mutually waiting for each other. Usually, when such a deadlock occurs, a timeout
comes to the rescue.

Behaviour deadlocks may be caused by any synchronous behaviour functions
of Erlang/OTP since, apart from being synchronous, they require the interfer-
ence of the user for the implementation of the callback functions and are thus
prone to errors. Having presented these two kinds of deadlocks in Erlang, that
are also the categories of deadlocks that our analysis detects, let us now present
the details of the analysis.

4 The Analysis

Statically detecting the deadlocks we described in the previous section is not triv-
ial. In order to detect communication deadlocks in a higher-order language with
unlimited process creation and asynchronous message passing such as Erlang, the
communication topology of processes needs to be determined in a fairly precise
way. On the other hand, the behaviour deadlock detection requires a quite dif-
ferent approach. Concrete hard-coded information about the Erlang behaviours
and their functionality must be provided to the analysis, that will use this infor-
mation for the creation of a wait-for graph, the basis for detecting these errors.
We have designed and implemented such analyses and describe them in this sec-
tion. Although we describe them as being distinct, the actual implementation
blurs the lines of this distinction in order to be efficient.

We have integrated our analyses in dialyzer both because it is a widely used
tool in the Erlang community [6] and because many of the components that it
relies upon were already available or could be easily extended to provide the
information that the analyses need. The analyses start with the user specify-
ing a set of directories/files to be analyzed. Rather than operating directly on
Erlang source, all of dialyzer’s passes operate at the level of Core Erlang [7], the
language used internally by the Erlang compiler. Core Erlang significantly eases
the analysis of Erlang programs by removing syntactic sugar and by introducing
a let construct that makes the binding occurrence and scope of all variables
explicit.

4.1 Detection of Communication Deadlocks

Conceptually, the analysis for the detection of communication deadlocks has
three distinct phases: an initial phase that scans the code to collect informa-
tion needed by the subsequent phases, a phase where a communication graph is
constructed, and a phase where communication deadlocks are detected.

In the first phase of the analysis, as the source code is translated to Core
Erlang, dialyzer constructs the control-flow graph (CFG) of each function and
function closure that will later be traversed in search of concurrency primitives.



8 Maria Christakis and Konstantinos Sagonas

fun ping/0

pong

play/0

Fig. 3. Communication graph of example program with communication deadlock

Dialyzer then uses the escape analysis of Carlsson et al. [8] to determine values,
in particular closures, that escape their defining function. Given this informa-
tion, dialyzer also constructs the inter-modular call graph of all functions and
closures, so that subsequent analyses can use this information to speed up their
fixpoint computations. Based on both the escape analysis and the call graph,
the analysis identifies the processes that might be created at runtime. Besides
control-flow, the analysis also needs data-flow information and more specifically
it needs information on whether variables can possibly refer to the same pro-
cess identifier or not. This information is computed and explicitly maintained by
the sharing/alias analysis component in dialyzer’s race analysis [4]. In addition,
our analysis exploits the fact that dialyzer computes type information at a very
fine-grained level [9] to decide whether messages match their receiving patterns.

The second phase of the analysis determines the interprocess communication
topology in the form of a graph. Each vertex of the graph represents a function
or closure whose code may be run by a separate process at runtime. This in-
formation is computed by a pre-processing step during the construction of the
call and control-flow graphs. Functions that correspond to root nodes in the call
graph as well as functions or escaping closures that are passed as arguments to
spawn calls are assumed to be executed by separate processes. For our exam-
ple program, the communication graph will contain three nodes, for functions
play/0 and ping/0 and for the closure. Every edge of the communication graph
is directed and corresponds to a communication channel between two processes.
Naturally, its direction of communication is from the source to the target pro-
cess, meaning that messages are sent in that direction. Each edge is annotated
with the type information of the messages that are sent through the channel.
In order to determine the graph edges, we need to inspect every possible exe-
cution path of the program for messages that are passed between processes. To
this end, the analysis traverses the CFGs of the functions corresponding to the
vertices in the communication graph using depth-first search. For each vertex,
if the traversal finds a send operation to some pid, the analysis takes variable
sharing into account to determine the recipient process that this pid refers to,
thus identifying the target vertices of each edge. In the end, this traversal creates
the complete set of edges in the communication graph. For the code of Fig. 1,
the communication graph has one edge from the closure to vertex ping/0 anno-
tated with pong since a pong message is sent from the process executing the code
of the closure to the ping process. The communication graph for this example
program is illustrated in Fig. 3.



Static Detection of Deadlocks in Erlang 9

At the final stage of the analysis, the CFG of each function that corresponds
to a vertex in the communication graph is traversed anew to detect any commu-
nication deadlocks. A vertex in the communication graph with in-degree equal to
zero indicates that no messages are sent to the process it represents. Hence, the
traversal of the CFG emits a warning for each receive construct it encounters.
A vertex with in-degree greater than zero indicates that messages are sent to
the process and the analysis determines whether these messages will be received.
In case the process expects to receive messages (i.e., there are receives in the
CFG), the analysis takes into account the type information of both the messages
and the receive patterns in order to decide whether they match. In short, at
the end of the CFG traversal, warnings are emitted for receive constructs that
do not have matching patterns for any messages. For the example program, the
analysis inspects the CFG of the closure, that has in-degree zero, and finds that
there is a receive in the code executed by the process, namely in pong/1. Con-
sequently, it emits a warning with the filename and line number of the receive
reporting a communication deadlock.

Note that this part of the analysis reuses components for the detection of
message passing errors, as we consider any message passing errors that involve
a blocking receive to be communication deadlocks. These components employ
optimization ideas and techniques to avoid false alarms in case the available static
information is too limited to construct the exact interprocess communication
topology [5].

4.2 Detection of Behaviour Deadlocks

The behaviour deadlock detection analysis also has three phases: an initial phase
that scans the code and collects information, a phase where a wait-for graph is
constructed, and a phase where behaviour deadlocks are detected.

The first phase of the analysis collects information that will be used for the
construction of the wait-for graph in the next phase, such as dialyzer’s type
information, the CFGs of each function and function closure and the inter-
modular call graph. Besides this, during the source code translation to Core
Erlang, information is obtained on which behaviours, if any, are implemented
by the user. For the example of Fig. 2, the analysis finds that the generic server
(gen server) design pattern is implemented since it is declared in the behaviour
attribute of the module. In addition, calls to any behaviour functions need to
be identified. To compute this information, the analysis first refers to a hard-
coded set of calls for each implemented behaviour. Then, during the construc-
tion of the function CFGs, it collects a set of program points containing any
of these calls. The behaviour set, i.e., the set of behaviour calls, for the ex-
ample program contains the gen server:start link/4, gen server:call/2,3
and gen server:cast/2 calls. Finally, the analysis refers once more to its hard-
coded information to generate a subset of the behaviour set, containing only the
synchronous calls. The gen server behaviour offers two families of synchronous
calls, the gen server:call/2,3 and gen server:multi call/2,3,4 calls, that
are all handled by the same callback function, the handle call/3 function.



10 Maria Christakis and Konstantinos Sagonas

server:handle_call/3 handling:
gen_server:call/2 in server:count_down/1,
gen_server:call/3 in server:handle_call/3

Fig. 4. Wait-for graph of example program with behaviour deadlock

Based on this information, the analysis filters the behaviour set to create the
synchronous subset containing the gen server:call/2,3 calls.

The second phase of the analysis constructs a wait-for graph, that is essen-
tially a call graph of synchronous calls. Every vertex of the graph represents a
callback function that handles the requests of a number of synchronous calls. As
we have already mentioned, both of the calls in the synchronous set are handled
by the same callback function. Thus the wait-for graph for our example pro-
gram has only one vertex annotated with the callback function and the program
points containing the synchronous calls that it handles. However, the analysis
does not have any information about the callback module, i.e., the module where
the handle call/3 function is defined. To identify this module, the analysis first
uses its hard-coded information to establish which argument of the synchronous
calls refers to the server and then exploits dialyzer’s type information to extract
the server name. In Fig. 2, the gen server:call/2,3 calls refer to the server
server, an atom defined in a macro definition. Now, the analysis uses the be-
haviour set to look for any calls that might register the server under this name.
In this case, gen server:start link/4 is the only call that could register the
server, as described in Sect. 3.2, and the type information of its first argument
confirms the name. From the type information of its second argument, it is es-
tablished that the server module is the callback module for this behaviour.
Thus the analysis infers that the requests of the gen server:call/2,3 calls are
handled by the server:handle call/3 function and the vertex of the wait-for
graph is created. Note that if the type information for the behaviour calls were
not precise enough to correctly identify the callback module, the analysis would
not proceed to avoid emitting any false alarms. In the wait-for graph, there is
a directed edge from vertex V1 to vertex V2 if there exists a synchronous call
whose request is handled by the callback function of V1 that must wait for a
synchronous call handled by the callback function of V2 to return. The edges are
determined by checking whether there is a path in the inter-modular call graph
from the callback function in each vertex of the wait-for graph to any caller
function of a synchronous call in the same or any other vertex of the graph.
If such a path exists, an edge is added from the vertex of the callback func-
tion to the vertex of the synchronous call. The path for the example program is
trivial since the callback function handle call/3 is also the caller function of
gen server:call/3. The wait-for graph for this program is shown in Fig 4.

The final phase of the analysis uses the wait-for graph in order to detect
behaviour deadlocks. A program might deadlock if and only if there is a directed



Static Detection of Deadlocks in Erlang 11

Build CFGs

Build

call graph

Infer

precise 

types

Gather 

behaviour

info

Identify 

behaviour 

calls

Identify 

synchronous 

calls

Identify 

callbacks of 

synch. calls

Create

wait-for 

vertices

Add

wait-for 

edges

Detect 

cycles

Fig. 5. Dependency graph for behaviour deadlock analysis

cycle in its wait-for graph. Consequently, the analysis searches the graph for the
existence of cycles. If such cycles exist, it reports the synchronous calls that are
mutually waiting for each other. As expected, the wait-for graph of Fig. 4 has a
cyclic wait that involves the gen server:call/2,3 calls.

A dependency graph for the behaviour deadlock analysis is shown in Fig. 5.
The phases of the analysis are indicated with different colors. Let us now evaluate
the effectiveness of these techniques on a suite of large, widely used Erlang
applications.

5 Experimental Evaluation

The analysis we described in the previous section has been fully implemented
and incorporated in the development version of dialyzer. We have paid special
attention to integrate it smoothly with the existing analyses, reuse as much of
the underlying infrastructure as possible, and fine-tune the analysis so that it
incurs relatively little additional overhead to dialyzer’s default mode of use. The
core of the deadlock analysis is about 2,500 lines of Erlang code and the user
can turn it on either via a GUI button or a command-line option.

We have measured the effectiveness and performance of the analysis by ap-
plying it on a corpus of Erlang code bases of significant size; in total more than a
million lines of code.3 As these code bases have been developed and tested over
a long period of time, it is perhaps not surprising that our analysis did not find
deadlocks in most of them. In fact, many Erlang developers admit to having run
into and corrected such errors. An indicative example is that of Reia4, a hybrid

3 The source of Erlang/OTP distribution alone is about 800k lines of code.
4
http://james-iry.blogspot.com/2009/04/erlang-style-actors-are-all-about_16.html

http://james-iry.blogspot.com/2009/04/erlang-style-actors-are-all-about_16.html


12 Maria Christakis and Konstantinos Sagonas

object/actor language for the Erlang VM: at some point during its implementa-
tion, there was a behaviour deadlock involving two generic servers synchronously
calling each other that was later eliminated. Still, there are Erlang/OTP libraries
and applications for which the analysis has detected possible deadlocks currently
present in their code. A short description of these code bases appears in Table 1;
most are heavily used and reasonably well-tested. For open source applications,
we used the code from their public repositories at the end of March 2011.

Table 1. Applications for which the analysis detected deadlocks

Application libraries from the Erlang/OTP R14B02 distribution

snmp Simple Network Management Protocol

Open source Erlang applications

dynomite A Dynamo clone
effigy A mocking library for testing
log roller A distributed logging system
yatsy Yet Another Test Server — Yaws compatible
zotonic A content management system

Table 2. Effectiveness of the deadlock analysis

Errors

Application LOC CD BD

snmp 56,728 - 1

dynomite 19,381 1 -
effigy 1,288 1 -
log roller 2,539 1 -
yatsy 2,356 - 23
zotonic 68,462 - 3

Table 2 shows the lines of code (LOC) for each application and the number of
blocking program points identified by the analysis. These are shown categorized
as in Sect. 3: namely, as related to a communication deadlock (CD) because
they involve a blocking receive, or a behaviour deadlock (BD) because there is
a synchronous call that will either timeout or wait forever. As can be seen in the
table, the analysis detects a number of errors, that may be detrimental to the
functionality and robustness of these applications. We have manually examined
the source code of these applications and all these problems are genuine bugs
under certain runtime conditions that are dependent on the program input and



Static Detection of Deadlocks in Erlang 13

the chosen execution paths. More details about these errors may be found on
dialyzer’s website: http://www.softlab.ntua.gr/dialyzer/.

Regarding performance, we deliberately did not include measurements of the
additional time and memory overhead of the deadlock detection component of
the analysis as it is too small to care about. In fact, for Erlang applications
consisting of hundreds of thousands of lines of code, time is typically a matter of
a few minutes and space is usually less than a gigabyte. Given that the analysis
is totally automatic and smoothly integrated in a defect detection tool that is
widely used by the community, we see very little reason not to use it regularly
when developing Erlang programs.

6 Related Work

The problem of detecting deadlocks in concurrent programs is fundamental and
well studied. In the literature one can find various approaches either for shared-
memory, distributed [10] or database systems [11]. Work on deadlock detection
for the former systems includes many static approaches. Boyapati et al. [12]
have presented a type based approach that allows programmers to specify a
partial order among locks and guarantees that well-typed programs are free
of data races and deadlocks. A number of data-flow analyses have also been
proposed. Among them, approaches by von Praun [13], Williams et al. [14] and
Engler and Ashcraft [15] rely on the computation of a static lock-order graph
and report cycles in the graph as possible deadlocks. Similarly, our analysis
for behaviour deadlock detection constructs a static graph and searches it for
cycles. In distributed and database systems, most approaches are dynamic but
also involve cycle detection in wait-for graphs. In these approaches however, the
main points of interest are the efficiency of the cycle detection algorithms and the
methods employed for the construction and maintenance of the wait-for graph.

Regarding communication, some researchers have proposed using effect-based
type systems to analyze the communication behaviour of message passing pro-
grams; an early such work is the analysis by Nielson and Nielson for detecting
when programs written in CML have a finite topology [16]. There has also been
a number of abstract interpretation based analyses that are closer in spirit to the
analysis we employ for the detection of communication deadlocks. Mercouroff
designed and implemented an analysis for CSP programs with a static struc-
ture based on an approximation of the number of messages sent between pro-
cesses [17]. Colby’s abstract interpretation based, whole program analysis uses
control paths to identify threads, possibly created at the same spawn point, and
construct the interprocess communication topology of the program [18]. A more
precise, but also more complex and less scalable, control-flow analysis was pro-
posed by Martel and Gengler [19]. Contrary to what we do, in their work the
accuracy of the analysis is enhanced by building finite automata that eliminate
some impossible communication channels and aid in computing the possibly
matching emissions for each reception, and thus the possibly received values.
An interesting future direction for our analysis is to see how we can use some

http://www.softlab.ntua.gr/dialyzer/


14 Maria Christakis and Konstantinos Sagonas

of these ideas to enhance the precision of our analysis without sacrificing its
performance.

In 2009, Claessen et al. proposed a method to detect race conditions in Erlang
programs by employing property-based testing using QuickCheck and a special
purpose randomizing user-level scheduler for Erlang called PULSE [20]. The
PULSE scheduler controls its processes by randomly picking only one of them
to run at a time. As an additional benefit, this design allows PULSE to detect
communication deadlocks when all of its randomly interleaved processes are
blocked waiting on some receive and no messages are being sent to any of
the blocked processes. To the best of our knowledge, this has been the only
attempt to detect deadlocks in Erlang programs so far. While we prefer our
method because it is more scalable and analyzes the entire program instead of
random process schedules, QuickCheck and PULSE may find deadlocks that our
tool would suppress for fear of emitting false alarms in case the available static
information were not precise enough.

7 Concluding Remarks

We have showed kinds of deadlocks that Erlang programs can exhibit and have
presented a static analysis that detects them. Our analysis is fast, robust and
uses effective techniques to achieve a proper balance between precision and per-
formance. By implementing this analysis in a publicly available and commonly
used tool for detecting software defects in Erlang programs, we were able to de-
tect a number of previously unknown deadlocks in widely used and reasonably
well-tested applications written in Erlang, as shown in the experimental evalu-
ation section of the paper. By identifying kinds of possible deadlocks in Erlang
programs, we also contribute in a concrete way to raising the awareness of the
Erlang programming community on these errors.

In the future, we hope that Erlang developers will be watching out for these
errors when programming. We also plan for our analysis to be included in an
upcoming release of Erlang/OTP, thus acquiring its place in the developer’s tool
suite. In a wider perspective, we are interested in evaluating such an analysis in
functional programming languages with similar concurrency features as Erlang.

References

1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. The Prag-
matic Bookshelf, Raleigh, NC (2007)

2. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications
through lightweight static analysis: A war story. In Chin, W.N., ed.: Programming
Languages and Systems: Proceedings of the Second Asian Symposium. Volume
3302 of LNCS., Berlin, Germany, Springer (2004) 91–106

3. Sagonas, K.: Experience from developing the Dialyzer: A static analysis tool de-
tecting defects in Erlang applications. In: Proceedings of the ACM SIGPLAN
Workshop on the Evaluation of Software Defect Detection Tools. (2005)



Static Detection of Deadlocks in Erlang 15

4. Christakis, M., Sagonas, K.: Static detection of race conditions in Erlang. In Carro,
M., Peña, R., eds.: Practical Aspects of Declarative Languages: Proceedings of the
PADL Symposium. Volume 5937 of LNCS., Berlin, Germany, Springer (January
2010) 119–133

5. Christakis, M., Sagonas, K.: Detection of asynchronous message passing errors
using static analysis. In Rocha, R., Launchbury, J., eds.: Practical Aspects of
Declarative Languages: Proceedings of the PADL Symposium. Volume 6539 of
LNCS., Berlin, Germany, Springer (January 2011) 5–18

6. Nagy, T., Nagyné Vı́g, A.: Erlang testing and tools survey. In: Proceedings of
the 7th ACM SIGPLAN Workshop on Erlang, New York, NY, USA, ACM (2008)
21–28

7. Carlsson, R.: An introduction to Core Erlang. In: Proceedings of the PLI’01
Workshop on Erlang. (2001)

8. Carlsson, R., Sagonas, K., Wilhelmsson, J.: Message analysis for concurrent pro-
grams using message passing. ACM Transactions on Programming Languages and
Systems 28(4) (July 2006) 715–746

9. Lindahl, T., Sagonas, K.: Practical type inference based on success typings. In:
Proceedings of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming, New York, NY, USA, ACM (2006) 167–178

10. Singhal, M.: Deadlock detection in distributed systems. Computer 22 (1989) 37–48

11. Knapp, E.: Deadlock detection in distributed databases. ACM Computing Surveys
19 (December 1987) 303–328

12. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. In: Proceedings of the 17th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA ’02, New York, NY, USA, ACM (2002) 211–230

13. von Praun, C.: Detecting Synchronization Defects in Multi-Threaded Object-
Oriented Programs. PhD thesis, Swiss Federal Institute of Technology, Zurich,
Switzerland (February 2004)

14. Williams, A., Thies, W., Ernst, M.D.: Static deadlock detection for Java libraries.
In: ECOOP 2005 — Object-Oriented Programming, 19th European Conference,
Glasgow, Scotland (July 2005) 602–629

15. Engler, D., Ashcraft, K.: RacerX: Effective, static detection of race conditions and
deadlocks. In: Proceedings of the 19th ACM Symposium on Operating Systems
Principles, New York, NY, USA, ACM (2003) 237–252

16. Nielson, F., Nielson, H.R.: Higher-Order Concurrent Programs with Finite Com-
munication Topology. In: Proceedings of the ACM-SIGPLAN Symposium on Prin-
ciples of Programming Languages, New York, NY, USA, ACM (1994) 84–97

17. Mercouroff, N.: An algorithm for analyzing communicating processes. In: Pro-
ceedings of the 7th International Conference on Mathematical Foundations of Pro-
gramming Semantics, London, UK, Springer-Verlag (1992) 312–325

18. Colby, C.: Analyzing the Communication Topology of Concurrent Programs.
In: Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, New York, NY, USA, ACM (1995) 202–
213

19. Martel, M., Gengler, M.: Communication Topology Analysis for Concurrent Pro-
grams. In: Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification. Volume 1885 of LNCS., Heidelberg, Springer
(2000) 265–286



16 Maria Christakis and Konstantinos Sagonas

20. Claessen, K., Pa lka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in Erlang with QuickCheck and PULSE. In: Proceed-
ings of the 14th ACM SIGPLAN International Conference on Functional Program-
ming, New York, NY, USA, ACM (2009) 149–160


	Static Detection of Deadlocks in Erlang
	Maria Christakis and Konstantinos Sagonas

