深入浅出Pytorch函数——torch.from_numpy

文章介绍了如何使用torch.from_numpy函数从numpy数组创建PyTorch张量,这种操作使得张量与numpy数组共享内存,对一方的修改会实时影响另一方,但返回的张量是不可调整大小的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《深入浅出Pytorch函数》总目录


numpy.ndarray创建一个张量。返回的张量和numpy.ndarray共用内存,对张量的修改将反映在numpy.ndarray,反之亦然。返回的张量不可调整大小。

语法
torch.from_numpy(ndarray)
实例
>>> a = numpy.array([1, 2, 3])
>>> t = torch.from_numpy(a)
>>> t
tensor([ 1,  2,  3])
>>> t[0] = -1
>>> a
array([-1,  2,  3])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值