自动驾驶最全基础知识、课程、论文、数据集、开源软件等资源整理分享

    自动驾驶汽车(Autonomous vehicles)又称无人驾驶汽车、电脑驾驶汽车、或轮式移动机器人,是一种通过电脑系统实现无人驾驶的智能汽车。在20世纪已有数十年的历史,21世纪初呈现出接近实用化的趋势。自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。

    资源整理自网络,源地址:https://github.com/manfreddiaz/awesome-autonomous-vehicles

    本文整理了自动驾驶相关的各种资源,包含自动驾驶基础知识点、免费课程、经典论文、研究实验室、公开数据集、开源软件、公司等资源,分享给需要的朋友,需要自取。

    基础知识

    Artificial Intelligence

    1.Awesome Machine Learning - A curated list of awesome Machine Learning frameworks, libraries and software. Maintained by Joseph Misiti.Joseph Misiti

    Deep Learning Papers Reading Roadmap - Deep Learning papers reading roadmap constructed from outline to detail, old to state-of-the-art, from generic to specific areas focus on state-of-the-art for anyone starting in Deep Learning. Maintained by, Flood Sung.

    Open Source Deep Learning Curriculum - Deep Learning curriculum meant to be a starting point for everyone interested in seriously studying the field.

    Robotics

    1.Awesome Robotics - A list of various books, courses and other resources for robotics, maintained by kiloreux.

    Computer Vision

    1.Awesome Computer Vision - A curated list of awesome computer vision resources, maintained by Jia-Bin Huang

    Awesome Deep Vision - A curated list of deep learning resources for computer vision, maintained by Jiwon Kim, Heesoo Myeong, Myungsub Choi, Jung Kwon Lee, Taeksoo Kim

    课程

    [Coursera] Machine Learning - presented by Andrew Ng, as of 2020 Jan 28 it has 125,344 ratings and 30,705 reviews.

    [Coursera+DeepLearning.ai]Deep Learning Specialization - presented by Andrew Ng, 5 Courses, teaches foundations of deep learning, programming language: python

    [Udacity] Self-Driving Car Nanodegree Program - teaches the skills and techniques used by self-driving car teams. Program syllabus can be found here.

    [University of Toronto] CSC2541 Visual Perception for Autonomous Driving - A graduate course in visual perception for autonomous driving. The class briefly covers topics in localization, ego-motion estimaton, free-space estimation, visual recognition (classification, detection, segmentation).

    [INRIA] Mobile Robots and Autonomous Vehicles - Introduces the key concepts required to program mobile robots and autonomous vehicles. The course presents both formal and algorithmic tools, and for its last week's topics (behavior modeling and learning), it will also provide realistic examples and programming exercises in Python.

    [Universty of Glasgow] ENG5017 Autonomous Vehicle Guidance Systems - Introduces the concepts behind autonomous vehicle guidance and coordination and enables students to design and implement guidance strategies for vehicles incorporating planning, optimising and reacting elements.

    [David Silver - Udacity] How to Land An Autonomous Vehicle Job: Coursework David Silver, from Udacity, reviews his coursework for landing a job in self-driving cars coming from a Software Engineering background.

    [Stanford] - CS221 Artificial Intelligence: Principles and Techniques - Contains a simple self-driving project and simulator.

    [MIT] 6.S094: Deep Learning for Self-Driving Cars - "This class is an introduction to the practice of deep learning through the applied theme of building a self-driving car. It is open to beginners and is designed for those who are new to machine learning, but it can also benefit advanced researchers in the field looking for a practical overview of deep learning methods and their application. (...)"

    [MIT] Deep Learning - "This page is a collection of MIT courses and lectures on deep learning, deep reinforcement learning, autonomous vehicles, and artificial intelligence organized by Lex Fridman."

    [MIT] Human-Centered Artificial Intelligence - "Human-Centered AI at MIT is a collection of research and courses focused on the design, development, and deployment of artificial intelligence systems that learn from and collaborate with humans in a deep, meaningful way."

    [UCSD] - MAE/ECE148 Introduction to Autonomous Vehicles - A hands-on, project-based course using DonkeyCar with lane-tracking functionality and various advanced topics such as object detection, navigation, etc.

    [MIT] 2.166 Duckietown - Class about the science of autonomy at the graduate level. This is a hands-on, project-focused course focusing on self-driving vehicles and high-level autonomy. The problem: Design the Autonomous Robo-Taxis System for the City of Duckietown.

    [Coursera] Self-Driving Cars - A 4 course specialization about Self-Driving Cars by the University of Toronto. Covering all the way from the Introduction, State Estimation & Localization, Visual Perception, Motion Planning.

    论文

    General

    1.[2016] Combining Deep Reinforcement Learning and Safety Based Control for Autonomous Driving. [ref]

    [2015] An Empirical Evaluation of Deep Learning on Highway Driving. [ref]

    [2015] Self-Driving Vehicles: The Challenges and Opportunities Ahead. [ref]

    [2014] Making Bertha Drive - An Autonomous Journey on a Historic Route. [ref]

    [2014] Towards Autonomous Vehicles. [ref]

    [2013] Towards a viable autonomous driving research platform. [ref]

    [2013] An ontology-based model to determine the automation level of an automated vehicle for co-driving. [ref]

    [2013] Autonomous Vehicle Navigation by Building 3d Map and by Detecting Human Trajectory Using Lidar. [ref]

    [2012] Autonomous Ground Vehicles - Concepts and a Path to the Future. [ref]

    [2011] Experimental Evaluation of Autonomous Driving Based on Visual Memory and Image-Based Visual Servoing. [ref]

    [2011] Learning to Drive: Perception for Autonomous Cars. [ref]

    [2010] Toward robotic cars. [ref]

    [2009] Autonomous Driving in Traffic: Boss and the Urban Challenge. [ref]

    [2009] Mapping, navigation, and learning for off-road traversal. [ref]

    [2008] Autonomous Driving in Urban Environments: Boss and the Urban Challenge. [ref]

    [2008] Caroline: An autonomously driving vehicle for urban environments. [ref]

    [2008] Design of an Urban Driverless Ground Vehicle. [ref]

    [2008] Little Ben: The Ben Franklin Racing Team's Entry in the 2007 DARPA Urban Challenge. [ref]

    [2008] Odin: Team VictorTango's Entry in the DARPA Urban Challenge. [ref]

    [2008] Robosemantics: How Stanley the Volkswagen Represents the World. [ref]

    [2008] Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge. [ref]

    [2008] The MIT-Cornell collision and why it happened. [ref]

    [2007] Self-Driving Cars - An AI-Robotics Challenge. [ref]

    [2007] 2007 DARPA Urban Challenge: The Ben Franklin Racing Team Team B156 Technical Paper. [ref]

    [2007] Team Mit Urban Challenge Technical Report. [ref]

    [2007] DARPA Urban Challenge Technical Report Austin Robot Technology [ref]

    [2007] Spirit of Berlin: an Autonomous Car

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值