堆(Heap)的原理与C++实现

1. 什么是堆?

堆(Heap)是一种特殊的树形数据结构,通常用于实现优先队列。堆可以分为两种类型:

  • 最大堆(Max Heap):每个节点的值都大于或等于其子节点的值。
  • 最小堆(Min Heap):每个节点的值都小于或等于其子节点的值。

堆通常是一个完全二叉树,这意味着除了最后一层,其他层都是完全填满的,并且最后一层的节点都尽可能地靠左排列。

2. 堆的性质

  • 完全二叉树:堆是一个完全二叉树,这意味着它可以用数组来高效地表示。
  • 堆序性质:在最大堆中,父节点的值总是大于或等于其子节点的值;在最小堆中,父节点的值总是小于或等于其子节点的值。

Tips: 堆是完全二叉树,并非二叉搜索树

在数据结构中,完全二叉树二叉搜索树是两种常见的树形结构,它们虽然都属于二叉树的范畴,但在定义、性质和应用场景上有显著的区别。下面我们将详细分析它们的区别。

特性 完全二叉树 二叉搜索树
定义 节点从上到下、从左到右依次填充 左子树 < 根节点 < 右子树
有序性 不一定有序 中序遍历结果有序
结构要求 必须是完全填充的(最后一层靠左) 无特殊结构要求,只需满足有序性
查找效率 不支持高效查找 支持高效查找(平衡时 O(log n))
插入和删除 通常用于堆操作,不支持动态插入删除 支持动态插入和删除
应用场景 堆、优先队列 查找、排序、数据库索引
数组表示 可以用数组高效表示 通常用指针或引用表示

完全二叉树示例

        10
       /  \
      5    15
     / \   /
    2   7 12
  • 节点从上到下、从左到右依次填充。
  • 最后一层的节点靠左排列。

二叉搜索树示例

        10
       /  \
      5    15
     / \   / \
    2   7 12 20
  • 左子树的所有节点值小于根节点,右子树的所有节点值大于根节点。
  • 中序遍历结果为 [2, 5, 7, 10, 12, 15, 20],是一个有序序列。

3. 堆的操作

堆的主要操作包括:

  • 插入(Insert):将一个新元素插入堆中,并保持堆的性质。
  • 删除(Delete):删除元素,并保持堆的性质。
  • 查询(Query):查询堆顶元素
  • 构建堆(Build Heap):将一个无序数组构建成一个堆。

4. 堆的实现

堆通常使用数组来实现。在从数组下标0开始存储的堆,对于一个索引为 i 的节点:

  • 其父节点的索引为 (i - 1) / 2
  • 其左子节点的索引为 2 * i + 1
  • 其右子节点的索引为 2 * i + 2

4.1 堆的性质维护

堆的插入过程

假设我们有一个最大堆,初始堆为:[100, 19, 36, 17, 3, 25, 1, 2, 7],其对应的完全二叉树结构如下(用数组表示):

        100
      /     \
    19       36
   /  \     /  \
  17   3   25   1
 / \
2  7

插入一个新元素40
将新元素添加到堆的末尾:堆的数组表示为 [100, 19, 36, 17, 3, 25, 1, 2, 7, 40],对应的完全二叉树结构如下:

     100
    /      \
   19      36
  /   \    / \
 17    3  25  1
/ \    /
2  7  40
  1. 向上调整(上浮):从新插入的节点开始,与其父节点比较。如果当前节点的值大于父节点的值,则交换它们的位置。
  • 40 的父节点是 3,40 > 3,交换它们的位置:
        100
      /      \
     19       36
    /  \     /  \
   17   40  25   1
  / \   /
 2  7  3
  • 40 的新父节点是 19,40 > 19,交换它们的位置:
      100
    /      \
   40       36
  /  \     /  \
17   19  25   1
/ \   /
2  7 3
  • 40 的新父节点是 100,40 < 100,停止调整。
  • 最终,插入 40 后的堆为:[100, 40, 36, 17, 19, 25, 1, 2, 7, 3]

总结:堆在插入元素后,需要进行上浮(up)操作,是不断与父节点比较,若父节点小于当前节点,则交换位置。具体代码实现示例如下:

//存储下标从1开始,以大根堆为例
void heap_up(int idx){
   
   
    while(idx != 1){
   
   
        int parent = idx >> 1;
        if(heap[parent] < heap[idx]){
   
   
            swap(heap[parent], heap[idx]);
            idx = parent;
        }
        else{
   
   
            break;
        }
    }
}
堆的删除过程

假设我们从上述堆中删除最大值(堆顶元素 100)。

  1. 将堆顶元素与最后一个元素交换:交换 100 和 3 的位置,得到 [3, 40, 36, 17, 19, 25, 1, 2, 7, 100],然后删除最后一个元素(100),得到 [3, 40, 36, 17, 19, 25, 1, 2, 7]。这是因为我们在用数组存储堆的时候,头部元素的删除面临整个数组的移动,相当消耗计算资源,于是我们选择将头部元素和尾部元素进行交换,进行删除尾部,再调整堆
  2. 向下调整(下沉):从堆顶开始,比较当前节点与其子节点的值,将当前节点与较大的子节点交换,直到满足堆的性质。
  • 当前堆顶是 3,其子节点是 40 和 36,40 > 36,选择 40 与 3 交换得到:
      40
    /      \
   3       36
  /  \     /  \
17   19  25   1
/ \  
2  7 
  • 3 的新位置是左子树的根,其子节点是 17 和 19,19 > 17,选择 19 与 3 交换:
      40
    /      \
   19       36
  /  \     /  \
17   3  25   1
/ \  
2  7 
  • 最终,删除 100 后的堆为:[40, 19, 36, 17, 3, 25, 1, 2, 7]
void heap_down(int idx){
   
   
    int size = top;
    while(1){
   
   
        int leftChild = idx * 2;
        int rightChild = idx * 2 + 1;
        int largest = idx;
        if(leftChild < size && heap[largest] < heap[leftChild]){
   
   
            largest = leftChild;
        }
        if(rightChild < size && heap[largest] 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值