当我刚开始使用大语言模型(LLMs)时,曾天真地以为关键在于写出完美的提示词。只要给足上下文,模型就能立竿见影地解决问题,对吧?
事实并非如此。
早期实践中,我逐渐意识到,自己不过是在向一个高级自动补全工具堆砌文字。输出内容看似智能,实则毫无理解可言。它无法规划、调整或推理,哪怕措辞稍有变动,整个输出就可能崩塌。
我所欠缺的是结构化思维。智能并非简单地输出答案,更在于答案的形成过程——过程本身至关重要。
这一认知引导我探索智能体AI模式(agentic AI patterns)——这些设计技巧能赋予大语言模型更强的目的性,让模型具备规划、反思、使用工具甚至与其他智能体协作的能力。它们帮助我摆脱了脆弱且效果不稳定的提示词,转向真正能解决问题的系统设计。
以下是对我影响最大的5种模式,我将以实用易懂的方式进行阐释。
1. 反思(Reflection):让智能体学会自查
你是否曾向ChatGPT提问,读完答案后觉得“听起来不错……但总有些不对劲”?
这正是反思模式的用武之地。这是一个简单的技巧:让模型在最终输出前重新审视自己的答案。
基本流程:
-
提出问题。
-
让模型给出答案。
-
然后再次提示:“这个答案完整吗?有没有遗漏?如何能更好?”
-
让模型自行修改。
这并非堆叠模型或增加复杂度,只是让它仔细检查自己的工作。说实话,仅此一点就能减少大量草率的错误,尤其在代码、摘要或任何细节密集型任务中效果显著。
不妨把这想象成给模型一个暂停键和一面镜子。