还记得你的AI首次给出自信满满的错误答案时的情景吗?或者当你的聊天机器人完全无视"最多500字"的指令时的无奈?欢迎来到概率性软件的奇妙世界——在这里,测试驱动开发(TDD)遇到了对手,而评估驱动开发(EDD)接过了方向盘。
单元测试欺骗我的那一天
想象一下:你编写了完美的单元测试,满眼都是绿色的对勾,代码覆盖率高达95%。你将代码部署到生产环境,打开庆祝的饮料,然后……你的AI开始像在火人节上一样胡言乱语。
这听起来是不是很熟悉?因为传统软件工程成长于确定性的世界,在那里assert(2+2)==4
永远成立。但AI工程呢?那完全是另一番景象。我们每天都在和每周更新的模型权重、用户创造性破解的提示词打交道,而成功的标准不再是"它奏效了吗?",而是"它多久奏效一次?效果如何?我们会因为API成本而破产吗?"
没人提醒过你的范式转变
为何你的单元测试正经历存在性危机
让我们直面现实:为什么传统测试在AI世界里像巧克力茶壶一样不堪一击?
-
二元幻觉
经典测试:
extractEmail()
会返回电子邮件吗?现实:你的大语言模型(LLM)可能返回"[email protected]"、"[email protected]"、"john[at]example.com",偶尔还会蹦出一首关于电子邮件的俳句。
-
模型版本探戈
周一:所有测试在GPT-4上通过
周二:OpenAI发布GPT-4-turbo
周三:你一半的"正常工作"功能开始用抑扬格五音步说话
-
无视成本的灾难
你的测试:✅全部通过!
你的AWS账单:📈47,000美元
你的首席财务官:😱"你说的'每天'是什么意思?!"
-
无人谈论的漂移
你在1月份精心调整的提示词?到3月份,它可能会建议用户在披萨上涂胶水——因为Reddit上是这么说的。欢迎来到模型漂移的世界——这份"礼物"会不断索取代价。
-
隐藏的漂移触发器
即使你的代码被完美冻结,参数锁得比诺克斯堡还严