【人脸检测——基于机器学习4】HOG特征

本文详细介绍了基于HOG特征的人脸检测算法,包括HOG特征的组成(Cell、Block和Detection Window)、特征提取步骤(如梯度计算、Spatial/Orientation Binning和归一化处理)以及其在人脸识别中的应用。通过理解HOG特征,可以更好地实现目标检测任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

HOG特征的全称是Histograms of Oriented Gradients,基于HOG特征的人脸识别算法主要包括HOG特征提取和目标检测,该算法的流程图如下图所示。本文主要讲HOG特征提取。

HOG特征的组成

Cell:将一幅图片划分为若干个cell(如上图绿色框所示),每个cell为8*8像素

Block:选取4个cell组成一个block(如上图红色框所示),每个block为16*16像素。Block的滑动步长为8像素,如黄色箭头所示

Detection Window:令64*128像素大小的图片为检测Win,在其中共计有105个block。

HOG 特征要完全描述一个obj的所有信息,它的维度=窗体中所有block个数(105)*每个block中cell的个数(4)*每个cell中Bin的个数(9)=3780(维),每一维就是一个bin

HOG特征的提取

  1. Gamma/Colour Normalization

在Navneet Dalal的实验 [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖洋洋的好日子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值