

Linux IPsec workshop, March 2018, Dresden Germany

RFC 4301 “Populate From Packet” (PFP) in Linux

Sowmini Varadhan (sowmini.varadhan@oracle.com)

Agenda

● Problem description: what is this and why do we need it?

– Follows up on discussion at
http://swan.libreswan.narkive.com/Tjgazg3z/ipsec-pfp-support-on-linux

– Entropy and RSS for performance

– How to retain entropy after IPsec
● Use-cases: RDS-TCP, VXLAN, RoCEv2

● PFP deep-dive

– Current kernel code
– Proposed changes needed to get this

● Discussion: DoS vector threats, sysctl knobs..

http://swan.libreswan.narkive.com/Tjgazg3z/ipsec-pfp-support-on-linux

ECMP: Equal Cost Multipathing
● For efficient network usage

– We want to avoid re-ordering of packets for a given
flow at the routers

– We want packets of different flows to exploit parallel
paths where possible (ECMP)

S1 S2

UDP sport 11111 → 4791

UDP sport 22222→ 4791

L1 L2

What is a “flow”?
● One definition “all ipv4 packets between host A to host

B”, or “all UDP packets from A to B”

● But this has a very large granularity- using TCP or UDP
4-tuple (src addr, src port, dst addr, dst port) gives us
better flow hashing.

● Same principles apply to RSS at the host as well- use
well-defined fields in the packet to define a “flow”

● Existing hardware at routers and ASICs already knows to
look for IP addresses and (for TCP and UDP) the port
numbers for flow-hashing

Entropy and UDP encapsulations
like VXLAN

● We have a number of L3 tunneling protocols that
encapsulate with TCP or UDP

● E.g., VXLAN tunnels a tenant L2 frame from a VM in
UDP.
– UDP destinaton port 4789 (IANA designated port# for VXLAN)

– UDP sport is a hash of fields in the tenant frame so that client flows
can be hashed across available ECMP paths at the router, UDP sport
is randomized to provide “entropy”

– VXLAN frame format (Ref:
https://docs.citrix.com/zh-cn/netscaler/11/networking/vxlans.html):

–

https://docs.citrix.com/zh-cn/netscaler/11/networking/vxlans.html

Other UDP encapsulations: RoCE

● RoCEv2 allows applications to tunnel IB frames over
UDP/IP, and obtain benefits of RDMA over commodity
ethernet

– Tunneling is done in the NIC firmware
Infiniband frame

TCP encapsulations: RDS-TCP

● Socket-over-socket model:
– Application opens a PF_RDS socket and sees datagram semantics.

– RDS Datagram is sent over a kernel TCP socket; TCP provides reliable,
ordered delivery

● TCP flows are between IANA registered RDS-TCP port (16385)
and a client transient port.

● Multipath RDS: RDS socket is hashed to one of 8 TCP flows
between any pair of peers. Client transient port provides
RSS/ECMP entropy.
– Why 8 sockets? Because the rule-of-thumb for best performance

using microbenchmarks like iperf says “use 8-10 socket because the
typical NIC has about 8 hardware rings”

Securing kernel manage UDP/TCP
tunneling sockets

● IPsec to provide privacy/encryption for data
sent through kernel managed TCP/UDP
sockets

● IPsec operates at the IP layer, encrypts
TCP/UDP header.

● Software/hardware IPsec offloads help
improve the single-stream performance profile

● But have we compromised the entropy?

IPsec/ESP hides the port numbers

● TCP and UDP headers may get encrypted with
IPsec

● Fortunately, the SPI (32 bits) gets inserted at the
exact same byte offset as TCP/UDP port
numbers (sport/dport are each 16 bits)

● Unique SPI per IPsec tunnel – so it can be used
to define a flow!
– Existing hardware can look at the same byte offset

to find the flow hash for TCP, UDP and ESP.

Getting an SPI per TCP/UDP 4-tuple

● We typically do not know the client transient port number a
priori- most client sockets will use a kernel-assigned port
number (implicit bind during connect(), or bind to port 0)

● That means we cannot set up the SADB/SPD entry for the
exact 4-tuple, we end up setting two tunnels

● Example for iperf testing, the server listens by default at
port 5001. To test Ipsec + iperf for 8 TCP streams using a
transient client port (typical iperf test) we would only be
able to set up the *swan tunnel “leftprotoport=tcp/5001”

● 8 TCP 4-tuples → 2 SPIs; Entropy is lost

But does it really matter?

● Oracle DB testing: cluster based appliance that can do
parallel queries using RDS-TCP to the database

● Three test cases

– Clear traffic, with load spread across 8 TCP connections
– IPsec with a single tunnel for *.16385 (single-SPI)
– Force the client ports via explicit bind(), and set up 8

IPsec tunnels (8-SPI)
● Elapsed time for the test, peak throughput and number of

CPUs processing softirq at peak throughput were
instrumented

Results for data appliance parallel
query test

Elapsed time (s) Peak throughput(Gbps) Number of cpus
processing softirq

Clear traffic over 8
TCP paths

30 8.2 4

IPsec with 1 SPI 606 0.281 1

IPsec with 8 SPIs 204 1.1 4

● Note that the throughput improves by a factor of 5X by ensuring that each TCP
connection gets a unique SPI

● The kernel used for the table above was a UEK 4.1 kernel that did not have
support for IPsec software or hardware offload. We expect the gap between
clear and IPsec traffic to be reduced with newer kernels that have IPsec offload
support (ongoing work to instrument this case)

● Having an SPI per TCP connection helps performance, but how to achieve this
without being constrained to requiring an explicit bind() for each TCP/UDP
socket?

RFC 4301: Populate From Packet

● RFC 4301 has a remedy for this
“If IPsec processing is specified for an entry, a "populate from packet" (PFP)
flag may be asserted for one or more of the selectors in the SPD entry (Local
IP address; Remote IP address; Next Layer Protocol; and, depending on Next
Layer Protocol, Local port and Remote port, or ICMP type/code, or Mobility
Header type). If asserted for a given selector X, the flag indicates that the SA
to be created should take its value for X from the value in the packet.
Otherwise, the SA should take its value(s) for X from the value(s) in the SPD
entry.”

● For TCP/UDP if the SPD is marked “PFP” send an
upcall to pluto and create an SA for the exact 4-tuple
for the packet that triggered the SPD lookup.

Current kernel behavior

● With “auto = ondemand” for *swan tunnel setup, when data is
sent (via connect() or send()/sendto()) an SADB_ACQUIRE
upcall is sent from the kernel to the pluto daemon.

● SADB_ACQUIRE is sent from xfrm_state_find() if
xfrm_state_lookat() tells us that there is no acquire currently
in progress.

– In the iperf example, today we’d trigger one ACQUIRE for the
first 4-tuple that matched *.5001 and subsequent packet
triggers that matched *.5001 would all find acq_in_progress

Proposed modification

● Add a new XFRM_POLICY_PFP flag, and provide the netlink hooks to
allow userspace to set it on a specific SPD

● In xfrm_state_lookat(), if we find an xfrm_state in XFRM_STATE_ACQ

 if (pol->flags & XFRM_POLICY_PFP) {

 // return acq_in_progress only if xfrm_selector_match() succeeds

 if ((x->sel.family &&

 !xfrm_selector_match(&x->sel, fl, x->sel.family)) ||

 !security_xfrm_state_pol_flow_match(x, pol, fl))

 return; // no acquire in progress.

}

*acq_in_progress = 1; // don’t send another ACQUIRE

Changes to pluto
● Need to be able to set the new

XFRM_POLICY_PFP flag
● And much more… Paul Wouters will describe

Is there a DoS threat with PFP?

● Clear TCP/UDP traffic gets entropy from the 4-tuple- kernel has to
manage some state per socket, routers use the entropy to find the
hash needed for ECMP

● If we have an SPI per 4-tuple, we end up creating IPsec tunnel
state merely for entropy

● we may end up with many more tunnels than the available
multipathing

– e.g., 1000 UDP sockets, but only 8-way multipathing => 1000
IPsec tunnels.

● Sysctl tunables to place upper limits on this? e.g., generate a max
of k ACQUIRE’s for a PFP SPD by using a mask for port
matching?

Backup slides

RDS-TCP Architectural Overview

user

kernel

RDS appRDS app RDS app

rds_tcp

TCP

IP

driver

Kernel TCP socket

App data

App data

RDS

RDS

App dataTCP

TCP RDS App dataIP

IP TCP RDS App dataL2

RSS and entropy

• Shannon Nelson pointed out to me that Niantic
does the RSS hashing based on the TCP/UDP 4-
tuple after decrypt (when offload has been
enabled)

• All drivers should follow that model for offloaded
IPsec (this will give the desired steering even
when PFP has not been requested)

• Even when IPsec has not been (or cannot be)
offloaded, NICs should use SPI for the RSS hash.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

