
Proprietary + ConfidentialGoogle Proprietary + Confidential

IPsec in Android



Confidential + Proprietary

Google Proprietary + Confidential

● IMS supports TLS and IPsec; IR.92 (VoLTE standard) specifies IPsec. (also IR.51 and IR.94)

● IWLAN uses IPsec for the data plane and IKE (with 3GPP extensions) for configuration.

○ TS 23.234 (requirements), TS 24.234 (stage 3 - protocol), TS 33.234 (security)

○ The prefix assigned to the phone is carried between LTE/UMTS and IWLAN within the tunnel.

● IMS requires Transport mode inside Tunnel mode

IMS and IWLAN



Confidential + Proprietary

Google Proprietary + Confidential

IMS and IWLAN



Confidential + Proprietary

Google Proprietary + Confidential

● Initial Focus on the data plane:

○ IPsec transport mode security on a per-socket basis

○ IPsec tunnel mode security to create encrypted Networks (e.g., IWLAN)

○ Combined: encrypted socket over an encrypted Network (e.g., SIP over IWLAN)

● UDP encapsulation for IPv4

○ Provide IKE/encap socket to userspace with guarantees of safety

● For IMS (transport), keys are manually generated from EAP-AKA.

● For IWLAN (tunnel), keying is performed by IKEv2 with 3GPP extensions.

Design Goals/Needs



Confidential + Proprietary

Google Proprietary + Confidential

● Multiple entities on-device concurrently configuring IPsec, such as VPNs and IMS.

○ They have no coordination mechanism

● Global policies are difficult in a multi-app environment

○ Per-socket policies are safe for individual socket owners

○ No acquires sent to userspace

● No dropped packets allowed during keying due to latency limits (esp. for transport mode)

Goals and Constraints



Confidential + Proprietary

Google Proprietary + Confidential

● SAs are provided by management object - IpSecTransform

● VTIs (in the future, XFRMIs) are created along with two pairs of policies(v4/6, in/out) and collected 
in a management object - IpSecTunnelInterface

● Association of an SA with a socket or tunnel is performed by calling an apply() method

○ applyXYZ() does re-key as follows:

■ SPI in the template selects the SA in the outbound direction by either setting a new 
socket policy or calling UPDPOLICY

■ Input direction “just works”™

● XFRMA_OUTPUT_MARK used to bind the tunnel to an underlying interface

Approach



Confidential + Proprietary

Google Proprietary + ConfidentialTransport Mode Socket Establishment



Confidential + Proprietary

Google Proprietary + ConfidentialTransport Mode Socket Establishment Contd.



Confidential + Proprietary

Google Proprietary + ConfidentialTunnel Mode Interface Establishment



Confidential + Proprietary

Google Proprietary + ConfidentialTunnel Mode Interface Establishment Contd.



Confidential + Proprietary

Google Proprietary + Confidential

● Major headache

● Solution:
○ Dependent on xt_policy module
○ uidBillingDone bit in packet mark (fwmark)
○ Exempt ESP, and count inner packets only
○ For firewalling, allow ESP packets, and packets that have no socket through

● Bypassing powersaving firewalls
○ ESP traffic blanket-exempted (regular apps can’t send/receive it)
○ Forwarding with UDP-encap-ESP allowed

IPsec data usage and firewalling



Confidential + Proprietary

Google Proprietary + Confidential

IPsec data usage and firewalling - cases

● Cases, for 
reference:



Confidential + Proprietary

Google Proprietary + Confidential

IPsec data usage and firewalling - cases

● Cases, for reference:



Confidential + Proprietary

Google Proprietary + Confidential

● Policy check isn’t performed for SAs in 
transport mode with socket policy on input.
○ Minor security issue?
○ Removing socket policies has no effect 

on inbound direction.
● Will XFRMI match against ‘0’?

○ Can we update the XFRMI on SAs while 
they are in ACTIVE state? Same question 
for the mark?

● Can XFRMI support multiple policies?

Questions


