目录
二、图嵌入方法(Graph Convolutional Networks (GCN) )
3. 图卷积层(Graph Convolutional Layer):
一、复杂网络建模
复杂网络是一种由大量相互连接的元素(节点或顶点)组成的网络结构,这些连接通常是非常复杂和动态的。这些网络可以在各种领域中发现,包括社交网络、生物学系统、信息技术和交通系统等。
复杂网络的研究主要关注网络的拓扑结构、动力学行为和功能性质。其中一些常见的复杂网络模型包括小世界网络、无标度网络和随机网络。这些模型帮助我们理解网络中信息传播、稳定性、鲁棒性等方面的特性。
在实际应用中,复杂网络理论被用于解决许多问题,例如社交网络分析、疾病传播模型、电力系统优化等。这个领域的研究对于理解现实世界中复杂系统的行为具有重要意义。
复杂网络的建模方法多种多样,因取决于网络的性质、应用领域和研究问题。以下是一些常见的复杂网络建模方法:
随机图模型(Random Graph Models): 这包括 Erdős-Rényi 模型、Gilbert 模型等,其中节点之间的连接是随机生成的。这些模型通常用于研究网络的基本性质。
小世界网络模型(Small-World Models): Watts-Strogatz 模型是一个著名的小世界网络模型,它通过添加随机连接来模拟现实中的短路径和高聚集性。
无标度网络模型(Scale-Free Models): Barabási-Albert 模型是一个常见的无标度网络模型,其中网络的度分布遵循幂律分布。这种模型更好地捕捉了现实中一些节点拥有更多连接的现象,也就是所谓的“