MATLAB算法实战应用案例精讲-【人工智能】差分隐私(概念篇)(二)(附python和MATLAB代码实现)

目录

几个相关概念

隐私保护预算

敏感度

算法原理

什么是差分隐私

差分隐私噪声添加机制

数值型差分隐私

实现机制

拉普拉斯机制

指数机制

高斯机制

为什么要使用高斯机制

其他机制:随机响应和扰动

ε-差分隐私

差分隐私的性质

串行组合性

并行组合性

后处理性

近似差分隐私

 差分隐私的应用场景

差分隐私算法和机器学习模型

差分隐私合成数据

知识拓展

差分隐私的变体

瑞丽差分隐私

瑞丽差分隐私在GNN中的应用:(GAP)

零集中差分隐私

本地差分隐私

优缺点

优点

局限性

代码实现

MATLAB

python

离散型差分隐私


 

几个相关概念

隐私保护预算

差分隐私保护的定义可知,隐私保护预算ε用于控制算法M在邻近数据集上获得相同输出的概率比值,反映了算法M所的隐私保护水平,ε越小,隐私保护水平越高。在极端情况下,当ε取值为0时,即表示算法M针对D与D’的输出的概率分布完全相同,由于D与D’为邻近数据集,根据数学归纳法可以很显然地得出结论,即当ε=0时,算法M的输出结果不能反映任何关于数据集的有用的信息。因此,从另一方面,ε的取值同时也反映了数据的可用性,在相同情况下,ε越小,数据可用性越低。

敏感度

差分隐私保护可以通过在查询函数的返回值中加入噪声来实现,但是噪声的大小同样会影响数据的安全性和可用性。通常使用敏感性作为噪声量大小的参数,表示删除数据集中某一记录对查询结果造成的影响。

算法原理

为了防止攻击者利用减法思维获取到个人隐私,差分隐私提出了一个重要的思路:在一次统计查询的数据集中增加或减少一条记录,可获得几乎相同的输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值