目录
前言
差分隐私是为了解决差分攻击而引入的解决方案,是密码学中的一种手段,可以有效防止他人从查询接口中找出个人隐私数据。其思想是在数据的采集或发布前,对数据进行扰动添加噪声,从而可以隐藏真实数据,避免具有背景知识的攻击者通过猜测,获取隐私信息,从而防止个人隐私数据泄露。在最好的情况下,不同的差分隐私算法可以使被保护数据广泛用于准确的数据分析,而无需借助于其他数据保护机制。由于差分隐私对于隐私的定义不依赖于攻击者的背景知识,所以被作为一种新型的隐私保护模型广泛地应用于数据挖掘,机器学习等各个领域。
知识储备
符号说明
数据库 <