MATLAB算法实战应用案例精讲-【人工智能】差分隐私(概念篇)

目录

前言

知识储备

算法原理

发展历程

差分隐私的引入

GIC 事件

ε(epsilon)-差分隐私​编辑

实现方式

什么是差分隐私

差分隐私的工作原理

数学模型

差分隐私计算公式

拉普拉斯机制 

高斯机制 

高斯机制满足 (ε,δ)-差分隐私的数学证明

可组合性

怎样在机器学习中运用差分隐私?

差分隐私分类

优缺点

优点

差分隐私的挑战和限制

应用场景

应用案例

数据有效性

隐私性


前言

差分隐私是为了解决差分攻击而引入的解决方案,是密码学中的一种手段,可以有效防止他人从查询接口中找出个人隐私数据。其思想是在数据的采集或发布前,对数据进行扰动添加噪声,从而可以隐藏真实数据,避免具有背景知识的攻击者通过猜测,获取隐私信息,从而防止个人隐私数据泄露。在最好的情况下,不同的差分隐私算法可以使被保护数据广泛用于准确的数据分析,而无需借助于其他数据保护机制。由于差分隐私对于隐私的定义不依赖于攻击者的背景知识,所以被作为一种新型的隐私保护模型广泛地应用于数据挖掘,机器学习等各个领域。

知识储备

符号说明

数据库 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值