目标检测YOLO实战应用案例100讲-面向恶劣环境下的多模态 行人识别(续)

本文深入研究了恶劣环境下的多模态行人识别,通过改进GAN网络实现了图像融合,提高了细节信息和对比度。在YOLOv5基础上构建了MSKE-YOLO算法,增强了模型的鲁棒性和检测精度。实验表明,SDGAN融合算法在定性与定量分析中优于传统方法,MSKE-YOLO在多模态行人识别中表现出更高的检测精度和更低的漏检率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值