目录 3.4 恶劣环境下行人数据集的构建 4 基于改进GAN网络的多模态图像融合算法研究 4.1 传统GAN网络模型的构建 4.2 改进GAN网络多模态图像融合模型的构建 4.2.1 生成器结构的改进 4.2.2 判别器结构的改进 4.2.3 损失函数的改进 4.3 仿真实验与结果分析 4.3.1 实验环境与参数设置 4.3.2 融合结果对比定性分析 4.3.3 融合结果对比定量分析 4.4 恶劣环境下多模态行人数据集的构建 5 恶劣环境下的多模态行人识别算法研究 5.1 传统YOLOv5算法的构建 5.2 改进YOLOv5算法多模态行人识别模型的构建 5.2.1 数据增强的改进 5.2.2 SENet的引入 5.2.3 K-means聚类算法的改进 5.2.4 损失函数的改进 5.3 多模态行人识别仿真与实验验证 5.3.1 算法评价指标 5.3.2 实验环境与参数设置 5.3.3 仿真验证与分析 5.3.4 实验验证与分析 知识拓展 面向恶劣环境下的多模态行人识别的YOLOv8实现 代码说明: 运行环境要求: 数据集结构示例: 本文篇幅较长,分为上下两篇,上篇详见面向恶劣环境下的多模态 行人识别 3.4 恶劣环境下行人数据集的构建 数据集对于图像检测与识