目录:
四、微分方程
1、微分方程定义
2、微分方程求解
五、空间直角坐标系
1、空间直角坐标系
2、向量及其线性运算
3、向量的数量积和向量积
普通方程就是求解未知数;
微分方程就是通过某个函数的微分来求解原函数;
偏微分方程就是这个函数不只一个自变量;
非稳态偏微分方程就是说这个函数的其中一个自变量是时间t。
四、微分方程
1、微分方程定义
含有自变量、函数及函数各阶导数的方程:F(x,y,y',……,y^n) = 0 称为微分方程;
此方程中导数的最高阶称为微分方程的阶;
满足微分方程的函数称为微分方程的解,通解中含有独立的任意常数的个数与微分方程的阶数相同,则解称为微分方程的通解,确定了任意常数的解称为微分方程的特解;
确定微分方程解中的任意常数的条件称为微分方程的初始条件。
2、微分方程求解
1)可分离变量微分方程
y' = dy/dx = f(x)*g(y),或 P(x)Q(y)dx+R(x)S(y)dy = 0
dy/g(y) = f(x)dx 两边积分 ∫[dy/g(y)] = ∫[f(x)dx],G(y) = F(x)+C 得通解。
2)齐次微分方程
形如 dy/dx = ψ(y/x) 的微分方程称为齐次微分方程,简称齐次方程。
变量代换,令 u = y/x,y = u*x,则 dy/dx = u+x*(du/dx),此时:u+x*(du/dx) = ψ(u),为可分离变量微分方程。
分离变量积分得:∫[du/(ψ(u)-u) = ∫(dx/x)。通解为:ψ(u) = ln|x|C,或 ψ(y/x) = ln|x|+C。
3)举例
例1、设有联接点 O(0,0) 和 A(1,1) 的一段向上凸的曲线弧OA,对于曲线弧OA 上任一动点 P(x,y),曲线弧OP 与直线OP 所围图形的面积为 X²,求曲线弧OA 的方程。
例2、导弹追踪问题(数学建模)
设位于坐标原点的甲舰向位于x轴上点 A(1, 0) 处的乙舰发射导弹,导弹头始终对准乙舰。如果乙舰以最大的速度 v0(常数)沿平行于y轴的直线行驶,导弹的速度 5v0,求导弹运行的曲线方程。乙舰行驶多远时,导弹将其击中?
关于变上限的理解见“微积分基础2之三、积分之3、微积分基本定理”。
4)线性微分方程
(1)一阶线性微分方程
形如 y'+p(x)y = q(x) 的微分方程称为一阶线性微分方程,其中 p(x)、q(x) 为连续函数,q(x) 又称为非齐次项。
当 q(x) = 0 时,方程 y'+p(x)y = 0 称为齐次线性微分方程。分离变量积分得:
∫(dy/y) = -∫[p(x)dx],即:ln|y| = -∫[p(x)dx]+ln|C|,从而 y = e^(-∫p(x)dx),是齐次的特解。
常数变异法:
设 y = C(x)e^(-∫p(x)dx) 是 y'+p(x)y = q(x) 的解,则 C'(x)e^(-∫p(x)dx) = q(x),
所以 C(x) = ∫{[q(x)e^[(-∫p(x)dx)]dx}+C,因此 y = e^[(-∫p(x)dx)]*{q(x)*e^[(-∫p(x)dx)]dx+C}
(2)二阶常系数线性微分方程
形如 y''+py'+qy = f(x) 的微分方程,其中 p,q 是实常数。自由项 f(x) 为定义在区间I上的连续函数,即 y''+py'+qy = 0 时,称为二阶常系数齐次线性微分方程。若函数y1 和 y2 之比为常数,称y1和y2是线性相关的;若函数y1 和 y2 之比不为常数,称 y1 和 y2 是线性无关的。特征方程为:λ^2+pλ+q = 0,然后根据特征方程根的情况对方程求解。
(3)二阶常系数非齐次线性微分方程
五、空间直角坐标系
1、空间直角坐标系
2、向量及其线性运算
1)关于向量
2)向量的运算
向量的数乘:
向量a 乘以一个 λ,其几何意义表示向量a 的有向线段伸长或压缩。
a、b 两个向量平行,那么 a 一定是 b 的数乘。
标准正交基:
共面:
若将向量 a1、a2、……an 的起点移至同一个点,它们的起点与终点都在同一个平面,称这些向量共面。
3、向量的数量积和向量积
1)向量的数量积
2)向量的向量积
无人扶我青云志,我自踏雪至山巅。觉得不错,动动发财的小手点个赞哦!