微积分基础3-微分方程与向量

本文深入探讨了微分方程的定义、求解方法,包括可分离变量、齐次方程和线性微分方程。同时介绍了空间直角坐标系中的向量概念和运算,涉及向量的数量积和向量积。此外,通过实例解释了微分方程在实际问题中的应用,如导弹追踪问题。内容覆盖了微分方程的基本理论和计算技巧,是理解动态系统和几何空间的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录:

四、微分方程

1、微分方程定义

2、微分方程求解

五、空间直角坐标系

1、空间直角坐标系

2、向量及其线性运算

3、向量的数量积和向量积


下续:数学-线性代数1(向量、矩阵、消元)


普通方程就是求解未知数;

微分方程就是通过某个函数的微分来求解原函数;

偏微分方程就是这个函数不只一个自变量;

非稳态偏微分方程就是说这个函数的其中一个自变量是时间t。


四、微分方程

1、微分方程定义

含有自变量、函数及函数各阶导数的方程:F(x,y,y',……,y^n) = 0 称为微分方程;

此方程中导数的最高阶称为微分方程的阶;

满足微分方程的函数称为微分方程的解,通解中含有独立的任意常数的个数与微分方程的阶数相同,则解称为微分方程的通解,确定了任意常数的解称为微分方程的特解;

确定微分方程解中的任意常数的条件称为微分方程的初始条件。

2、微分方程求解

1)可分离变量微分方程

y' = dy/dx = f(x)*g(y),或 P(x)Q(y)dx+R(x)S(y)dy = 0

dy/g(y) = f(x)dx 两边积分 ∫[dy/g(y)] = ∫[f(x)dx],G(y) = F(x)+C 得通解。

2)齐次微分方程

形如 dy/dx = ψ(y/x) 的微分方程称为齐次微分方程,简称齐次方程。

变量代换,令 u = y/x,y = u*x,则 dy/dx = u+x*(du/dx),此时:u+x*(du/dx) = ψ(u),为可分离变量微分方程。

分离变量积分得:∫[du/(ψ(u)-u) = ∫(dx/x)。通解为:ψ(u) = ln|x|C,或 ψ(y/x) = ln|x|+C。

3)举例

例1、设有联接点 O(0,0) 和 A(1,1) 的一段向上凸的曲线弧OA,对于曲线弧OA 上任一动点 P(x,y),曲线弧OP 与直线OP 所围图形的面积为 X²,求曲线弧OA 的方程。

例2、导弹追踪问题(数学建模)

设位于坐标原点的甲舰向位于x轴上点 A(1, 0) 处的乙舰发射导弹,导弹头始终对准乙舰。如果乙舰以最大的速度 v0(常数)沿平行于y轴的直线行驶,导弹的速度 5v0,求导弹运行的曲线方程。乙舰行驶多远时,导弹将其击中?

关于变上限的理解见“微积分基础2三、积分3、微积分基本定理”。

4)线性微分方程

(1)一阶线性微分方程

形如 y'+p(x)y = q(x) 的微分方程称为一阶线性微分方程,其中 p(x)、q(x) 为连续函数,q(x) 又称为非齐次项。

当 q(x) = 0 时,方程 y'+p(x)y = 0 称为齐次线性微分方程。分离变量积分得:

∫(dy/y) = -∫[p(x)dx],即:ln|y| = -∫[p(x)dx]+ln|C|,从而 y = e^(-∫p(x)dx),是齐次的特解。

常数变异法:

设 y = C(x)e^(-∫p(x)dx) 是 y'+p(x)y = q(x) 的解,则 C'(x)e^(-∫p(x)dx) = q(x),

所以 C(x) = ∫{[q(x)e^[(-∫p(x)dx)]dx}+C,因此 y = e^[(-∫p(x)dx)]*{q(x)*e^[(-∫p(x)dx)]dx+C}

(2)二阶常系数线性微分方程

形如 y''+py'+qy = f(x) 的微分方程,其中 p,q 是实常数。自由项 f(x) 为定义在区间I上的连续函数,即 y''+py'+qy = 0 时,称为二阶常系数齐次线性微分方程。若函数y1 和 y2 之比为常数,称y1和y2是线性相关的;若函数y1 和 y2 之比不为常数,称 y1 和 y2 是线性无关的。特征方程为:λ^2+pλ+q = 0,然后根据特征方程根的情况对方程求解。

(3)二阶常系数非齐次线性微分方程

五、空间直角坐标系

1、空间直角坐标系

2、向量及其线性运算

1)关于向量

2)向量的运算

向量的数乘:

向量a 乘以一个 λ,其几何意义表示向量a 的有向线段伸长或压缩。

a、b 两个向量平行,那么 a 一定是 b 的数乘。

标准正交基:

共面:

若将向量 a1、a2、……an 的起点移至同一个点,它们的起点与终点都在同一个平面,称这些向量共面。

3、向量的数量积和向量积

1)向量的数量积

2)向量的向量积

向量的详细介绍移步: 数学-线性代数

无人扶我青云志,我自踏雪至山巅。觉得不错,动动发财的小手点个赞哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱上电路设计

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值