NVIDIA CUDA和cuDNN显卡历代版本下载地址

本文详细介绍了如何为深度学习项目配置NVIDIA GPU环境,包括安装NVIDIA显卡驱动、CUDA和cuDNN的步骤,以及推荐的下载资源。同时提供了显卡计算能力查询和GPU检测工具的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NVIDIA显卡计算能力一览表

https://developer.nvidia.com/cuda-gpus

Halcon图像库支持深度学习,GPU计算能力要求3.0以上

深度学习必备

先安装N卡的显卡驱动--->再安装cuda-->最后安装cuDNN

显卡驱动

1、NVIDIA官方

https://www.nvidia.cn/Download/index.aspx

https://www.nvidia.cn/geforce/drivers/

下载exe,例如526.98-desktop-win10-win11-64bit-international-dch-whql.exe 

 2、NVCleanStall

https://www.techpowerup.com/nvcleanstall/

https://www.chiphell.com/thread-2151753-1-1.html

NVCleanStall可以定制安装,对于绝大部分人来说, 一个显卡驱动,一个PhysX驱动,HD Audio via HDMI已经够用了。

CUDA

1、电脑-NVIDIA控制面板-帮助-系统信息-组件,可以查看显卡支持的CUDA版本

 2、去官网下载对应的版本

https://developer.nvidia.com/cuda-toolkit-archive

https://developer.nvidia.com/cuda-downloads

下载exe,例如cuda_11.8.0_522.06_windows.exe

3、默认安装路径

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8

cuDNN

https://developer.nvidia.com/rdp/cudnn-archive

https://developer.nvidia.com/rdp/cudnn-download

下载zip,例如cudnn-windows-x86_64-8.7.0.84_cuda11-archive.zip

然后收到解压到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8

下载需要登录,li*@163.com,D*0

算力查询

https://developer.nvidia.cn/cuda-gpus

显卡检测工具GPUZ

https://www.techpowerup.com/download/

---

参考文献

http://www.ihalcon.com/read-14649.html

cuda实现的连通域

https://docs.nvidia.com/cuda/npp/group__image__filter__label__markers.html

CV-CUDA™ is an open-source, GPU accelerated library for cloud-scale image processing and computer vision.

https://github.com/CVCUDA/CV-CUDA

### NVIDIA 显卡驱动、CUDA cuDNN 的兼容版本对应关系 为了确保 NVIDIA 显卡能够高效运行基于 CUDA 的应用程序以及深度学习框架(如 TensorFlow 或 PyTorch),需要正确配置显卡驱动、CUDA 工具包 cuDNN 库之间的版本匹配。以下是关于这些组件之间兼容性的详细说明: #### 1. 显卡驱动与 CUDA 的兼容性 显卡驱动程序的版本决定了可以使用的最高 CUDA 版本。例如,如果要使用 CUDA 11.8,则显卡驱动版本至少需要达到 515.43.04;而 CUDA 12.x 要求驱动版本不低于 535.54.03[^2]。 可以通过以下命令检查当前系统的显卡驱动状态及其支持的最大 CUDA 版本: ```bash nvidia-smi ``` 此命令会返回有关 GPU 使用情况的信息,在输出窗口的右上角可以看到 `CUDA Version` 字样,标明该驱动所支持的最高 CUDA 版本[^4]。 #### 2. CUDAcuDNN 的依赖关系 cuDNN 是一种针对深度神经网络优化的库,它通常作为附加组件集成到 CUDA 中工作。不同版本cuDNN 可能仅适用于特定范围内的 CUDA 版本。例如,cuDNN v8.9 支持 CUDA 11.7 至 CUDA 12.1[^5]。因此,在选择 cuDNN 版本时,务必确认其是否能在目标 CUDA 版本下正常运作。 #### 3. 综合考虑各软件栈间的相互作用 除了上述两点外,还需要注意其他机器学习框架(比如 TensorFlow 或 PyTorch)对于底层硬件环境的具体需求。某些框架可能只适配于指定区间内的 CUDA/cuDNN 组合。例如,PyTorch 2.0 推荐搭配 CUDA 11.8 cuDNN 8.6 来获得最佳性能表现[^3]。 综上所述,合理规划整个技术堆栈中的各个组成部分至关重要——从基础层面上看就是保证操作系统上的 NVIDIA 驱动更新至适当水平以便加载期望版本号区段里的 CUDA runtime API 实现方案进而再依据实际项目应用场景选取恰当规格参数设定下的 cuDNN 加速引擎实例化对象完成初始化过程从而最终达成预期效果目的。 ```python import torch print(torch.cuda.is_available()) # 检查是否有可用的GPU设备 print(torch.version.cuda) # 查看当前PyTorch绑定的CUDA版本 print(torch.backends.cudnn.version()) # 获取已加载的cuDNN版本信息 ``` 以上代码片段可用于验证 Python 环境中安装的相关模块是否正确定位到了所需的 CUDA cuDNN 设置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值